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Chapter 1

Introduction

This guidebook, the second of a two-volunlc  series, is intenclccl to facilitate the transfer of-.
fcmnal methods to the avionics and aerospace conmunity.  The first volurnc  concentrates
on administrative and planning issues [NASA-95a], and the second volunle focuses cm the
technical issues involved in applying forn~al methods  to avionics and aerospace software
systen~s.  Hereafter,  the term “guidebook” refers  exclusively to the second volutnc of
the series. The title of this second volunle,  A Practitioner’s  Conlpanion,  conveys its

intent. The guidebook is writteu prinlarily for the nonexpert and requires little or no
prior  experience with fcnvnal  nwthods techniques and tools. However, it does attetnpt
to distill sonw of the nlore  subtle ingrecl ients in the productive application of formal
nmthods.  To the extexit that, it succeeds, those conversant with fo;nlal  nwtliods will
also find the guidel)ook useful. The discussion is illustrated through the developnlent
of a realistic exanlple,  relevant fragnwnts  of which appear  in each chapter.

The guidebook focuses primarily on the use of forn~al  nlethods for analysis of require-
nlcnts and high-level design, the stages at which forn~al  nlethods have been nlost produc-
tively  applied. Although n~uch of the discussion applies to low-level design and inlple-
nwnt at ion, the guidebook does not discuss issues involved in the later life cycle applica-
tion of fornlal  nlcthods. The cxan@ provided in the guidebook is based on the control
function for the Sinlplified  Aid for EVA (Extravehicular Activity) Rescue [SAFER94a,
SAFER94h],  hereafter referred to as SAFER I, which has been specified and analyzed
using the PVS specification language and interactive proof checker [0 RSvH95].  PVS
has been selected because it has been successfully used on NASA projects, includ-
ing [LR93a, NASA93, LA94, hIin95, BCC+ 95, HCL95, SM95b,  DR96, ML96],  and because
it is representative of a class of tools that,  offers a formal  specification language in a
conlprehensive environment, including automated proof support. In forn~alizing  the
— — . - —.

1 SAFER is a descendent of the hlauned  Nlaneuvering  Unit (MM L’) [hf ML-83]. The main difference
between SAFER and the MMU is that S.4FER  is a small, lightlveight, “simplified” single-string system
for contingency use (self-rescue) only, whereas the IIMU is a larger, bulkier. but extremely versatile
E~JA ~alleul,ering dei,i~~  The application  of fox nlal methods  t,o SAFER is limited to the example  in
this guidebook; formal methods have not been  used to support SAFER development or maintenance.

1
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SAFER example, the priorities have been readability and portability to other formal
methods paradigms. Consequently, the discussion is framed in genera] terms applicable
to most formal methods strategic% and techniques,

The guidebook is not a tutorial on formal ]Ilethocls; it does not pr-ovidc  a groundil~,g
in mathe,mat  ical logic or formal  specification slid verification, although t lle appendices
contain references that provide technical background, as well as a glossary of key terms.
Nor is it a formal metl)ods cookbook; there  are no recipes that detail the step-by-step
preparation of a formal methods product. Furthermore, the guidebook assumes that,
the reader is aware of the potential lmnefits  alld fallibility ics of formal met nods: it does
not dwell on the very real benefits of the appropriate application of formal methods or
the equally real pitfalls of misuse.

The guidebook does contain a fairly detailed account of the technical issues involved
in applying fornlal  methods to avionics and aerospace software systems, including a
well-developed example. in order of presentation, the topics covered in the guidebook
include requirements, moclels,  formal s~)ecificatiox~,  and forlnal  analysis. However. the
application of formal methods is not an essentially linear process. Forlnal nlethods
aye lnost l)roductive  when integrated with existing life cycle processes, arid wlle~l  they
use an iterative strategy that successively refines and validates the formalization, t lle
requirements, the clesigll, and if desired, critical parts of the im~)lement at ion.

This guidet)ook is organized as follows: Chapter 2 reviews technical considerations
relevant, to projects considerirlg  the use of fornlal methods, touching briefly on general
elements of the somewhat elusive method underlying formal  methods. This chapter also
~Jroviclcs  lmckground Iuaterial  on tile SAFER  example clmwlo~wcl  in subsequent clmp
ters.  Chapter 3 examines the notion of requirements from a formal methods perspective
and introduces selected requirements for the ongoing SAFER example. The concept of
models and a survey of modeling strategies are introduced in Chapter 4, along u’ith a
formal model for a SAFEF{ subsystem. A fragment of the specification fol tlIe SAFER
requirements introduced in Chapter 3 is developed using the model defined in Chapter 4.
Chapter 5 provides a discussion of formal specification, including topics ranging from
specification languages, paradigms, and strategies, to type consistency of specifications.
Agaill, a discussion of the pertinent step in the development of the SAFER example
ap~)ears  at the end of the chapter. Chapter 6 ccmsiders techniques and toc)ls  for formal
analysis, including such topics as the role of formal proof, the impact of specification
strategy OXL formal analysis, and the utility of various analysis strategies. A discussion
of formal analysis of key properties of the SAFER specification appears at the end of
the chapter. Follo~ving concluding remarks iu Chapter 7 are three appendices: Ap-
pendix A contains a glossary of key terms and concepts, Appendix El lists material for
further reading, and Appendix C offers an extended discussion of the complete SAFER
exam~dc.2
.— —— ——

2The PVS source files for the SAFER example are available 011 LaRC’s lVeb server iu the directory
ftp://atb-www.l  arc.nasa.gov/Gui debooks/.
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There are several ways to usc this guidebook. The heart of the discussion a~)pears  in
Chapters 4, 5, aud 6. Readers new to forlnal  methods may waut to concentrate 011 these
key chapters, along with the first three cha~)ters  aud the conclusion, possibly skippillg
Chapter 6 the first titnc through. in nlost cases,  historical observations and ruore

technical nlaterial  arc bracketed with the “daugcrous bend’)  signs: ~...~ .3  More

experienced practitioners may waut to focus on Chapters 5 alid 6, or skip directly to
the full treatnlent  of the exau~ple ill Appendix C. The SAFER example that concludes
each chapter should be used to further clarify the discussion as the reader proceeds,
rather than saved as a finale at the end of tile chapter.

3The “dangerous beud”  icon was introduced by Knuth  [KIIu86]



Chapter 2

The Practical Application of
Formal Methods

The practical a~)~)lication  of formal methods typically occurs witlliu  the context of a
project and, possibly, within a broader context dictated by institutionalized conven-
tions or criteria. These contexts determi~le the role of formal methods aud the dime~i  -
sions of its use. This chapter contains a review’ of these contextual factors, including a
brief ovcr~’iew of the formal methods process. ‘J’he discussion moves from the ex~)licitly
formal  nature of formal methods to the more elusive methods  implied iu its use. The
chapter also provides sufficient background iuformat  ion on SAFER to clarify and nlot i-
vate ~nwsentation of pertitlcnt  aspects of the formalization and analysis of SAFER that
illustrate the discussions in each of the subsequent chapters.

2 .1  What Are Formal h!tethods?

The term Formal Methods refers to the use of techniques from logic and discrete n~athe-
matics in the specification, design, and construction of computer systems and software.
The word “formal” derives from formal logic and means ‘(~wrtaining  to the structural
relationship (i.e., form) between elements. ” Formal logic refers to methods of reasoning
that are valid by virtue of their form and iudcpcndeut of their content. These meth-
ods rely on a discipline that requires the explicit enumeration of all assumptions and
reasoning steps. Ill addition, each reasoning step must be an illstance  of a relatively
small number of allowed rules of inference. The most rigorous formal methods apply
tllesc  techniques to substantiate the reasoning used to j ust ify the requirements, or other
aspects of the design or implementation of a complex or critical system. IIi formal logic,
as well as formal methods, the objective is the same: reduce reliance on human intuition
alld judgment, in evaluating arguments. That is, reduce  the acceptability of au argu-
ment to a calculation  that can, in principle, be checked mechanically, thereby replacing

4



the itdlerent  subjectivity of the review  process with a repeuta  ble exercise. I,ess rigorous
formal Incthodsl tend to emphasize the formalization and forego the calculation.

This definition implies a broad spectrutn  of formal methods techtliqum,  as well as a
2. Tile il~teraction  of the techniquessimilarly wide range of formal nlcthods strategies<

slid strategies -yields many forlnal methods options, constraiucd,  for any given project.
by the role of formal  I[lcthods  and the resources available for its application. The roles
of formal met Ilods are discussed in the following section. An evaluation of resources as a
factor shaping formal methods can be found in Volume 1 of this Guidebook [NASA-95a].3
The purpose of the next few sections is to emphasize the versatility of formal methods
and the importance of customizing the usc of formal methods to the application.

2.2 Roles of Formal Methods

As noted above, formal nletbods may bc used to calculate. For example, a formal
nlethod may be used to determine whcibcr  a certain description is internally consistent,
whether certain properties arc consequences of proposed requirements, whether one level
of design implements another, or whether one design is preferable to another. In such
cases, the focus of formal methods use is largely analytical. Formal methods may also
have a primarily descriptive focus, for example, to clarify or document requirements
or high-level design, or to facilitate communication of a recluiremcnt or design during
inspections or reviews. Each usc reflects a particular formal methods role. Formal
nlethods may also be used to satisfy standards or to provide assurance or certification
data, in which case the role of formal methods, as well as the analytic or descriptive
content  of the forlnal  methods ~woduct,  is ~~rescritxxl.

The intended role or roles specified for a particular application of formal methods
servm to constrain the set of techniques and strategies appropriate for that project.

2.3 Formal Methods: Degree of Formalization and Scope
of Use

Formal methods options may be classified in terms of techniques that are differentiated
try degree  or level of formalization (Figure 2.1 (a)), and strategies that are characterized
by the scope of formal methods usc (Figure 2.1 (b)). Level of formalization and scope
of use are independent factors that combine to determine the range of formal methods
ol)tions,  hence their juxtaposition in Figure 2.1.
——.——. -. —

10r, equivalently, the use of a rigorous formal n]ethod  at a lo~ver level of rigor. The extent of
formalization and level of rigo~  are discussed in Section 2.3.

‘As used here and throughout the remainder of the guidebook, “formal methods strategies’” refer to
stratagems for productively employing the mathematical techniques that comprise formal methods.

3The material in the following sections reflects the type of technical issues typically raised in a generaI
discussion of formal methods USC. h’fore  complete exploration of these and related topics can be found,
fol example, in [Rus93a, EIS93, Hf195tI].
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1:---=:”:~
1. Mathematical concepts and notation,
infor~nal analysis (if ally), no mechanization
2. Fornlalized-  specificatioll languages,
some mechanized su~q)ort
3. Formal specification languages,
comprehensive environment, including
autolnated proof cllecker/theoreln  prover

Figure  2.1: The Range of Formal  Methods options
of For~nalization  and (b) Scope of Formal Methods

Cha])ter 2

FEEI.lfe cycle phases:
I all/selected
I System conll,onents:

Fall/selected ——
System  functionality:
full/selected

Sununarized  in Terms of (a) I,cvels
use.

2 .3 .1  Leve ls  o f  Formal izat ion

Formal methods techniques may lW defined at
which a technique formulates specifications in a

varying levels, reflecting the extent to
language with a well-defined semautics,

ex~)licitly  enumerates all assumptions, and reduces lJroofs to applications of well-defined
rules of inference. lncreasiug the degree of formality allows spczificat ions and assump-
tions to bc less dependent on subjective reviews and consensus and more amcnab]e to
systclnatic analysis and re~)licatioll. g’here is a distinction to be drawn between the
terms rigor and fornlality;  it is possible to h rigorous, that is, painstakingly serious
and careful, without being truly formal in the mathematical sense. Sil)ce  it is difficult
to use a high degree of forlllality  with pencil at Id paper [I{vH93], increasing formality is
associated here with increasing dependence on computer support.

As techniques mature and acquire automated support, their level of formalization
typically changes. The evolution of the A-7 or Software Cost Reduction (SCR)  nlethocl-
ology illustrates this process. In the late 1970s, Parnas,  Heninger, and colleagues at the
Naval Research Laboratory (NTI{L) defined a tabular method to specify software system
requirements [H+ 78]. Van Schouwen  subsequently formalized the method olc)gy and its
underlying mathematical model [v S90]. Researchers at NTR1, have Continuc!d  to work
on the SCR methodology, refining the model, providing a formal semantics, developing
automated tools including co]lsistency and completeness checkers, and, lnost  recently,
exploit ing extant model checkers and theorem provers [HBGL95,  BH97, AH97].

The levels of formalization are defined below, listed in order of increasing formality
and effort. The purpose of this classification is to identify broad classes of formal
met hods. The distinct ions underlying the classification are neither hard and fast, nor a
measure of the inherent merit or mathematical sophistication of a technique. Instead,
the distinctions reflect the extent to which a technique is both mathematically well-
defined and supported by mechanized tools, yielding systematic analyses and replicable
results.
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1. ‘1’hc use of notations and concepts derived from logic and discrete math to de-
velop more precise requirements st atanents  and spmificat ions. Analysis. if any,
is informal. This level of formal methods typically augments existing processes
without imposing wholesale revisiol~s.  Examples include early formulations of the
A-7 methodology [11+” 78, Hen80,  vS90],  varicms case- and object-ol  iented modelitlg
techniques [Bo091,  CY91b, CY91a, RBP+ 91, Sys92],  and hflills and Dyer’s Clcan-
room methodolop;y  [Mi193, 1.in94], although the latter  is all excc!l)tion in that it
supplants rather than augments existing processes.

2. l’he use of formalized specification languages with mechanized sul)port tools
ranging from syntax checkers and ~)rettyprinters  to typecheckers,  interpreters,
and animators. l’his level of formality usually includes supl]ort  for modern
software engineering constructs with explicit interfaces, for example, Inoc]ules,
abstract data types, and objects. Historically, tools  at this level haven’t of-
fered mechanized theorem l)roving, although recent evolution of the follmvitlg
tools has increased their support for mechanized proof: Larch [wSJGJMW93],
RAISE [Gro92],  SD]. [BHS91],  VDh4 [Jon90],  Z [Spi88,  Wor92] and SCR [F’C87,
HJL95, HLK95, HBG1J95].

3. ‘1’he use of formal specification languages with rigorous semantics and corre-
s~)onding]y  formal proof methods that support mechanization. Examples in-
c l u d e  H O L  [GL493], NTqthn~  [BMW],  ACL2 [KM96],  EVES [CKM+ 9 1 ] ,  a n d
PVS [0 RSvH95]. State exploration [H0191,  ID93], model checking [McM93],  and
language inclusion [Kur94] techniques also exemplify this level, although these
technologies usc highly s~)ecialized,  automatic theorem provers that are limited to
checking properties of finite-state systems or of infinite-state systems with ccrtaill
structural regularities.

One of the maxims of this guidebook is the importance of tailoring the use of formal
methods to the task. In this case, the maxim implies that higher levels of rigor are
not necessarily superior to lower levels. The highest level of formality may not be the
most appropriate or productive for a given application. A project that intends using
formal methods primarily to document tllc emerging requirements for a new system
component would make very different choices than if they were formally verifying key
properties of an inherently difficult algorithm for a distributed protocol. Implicit in the
discussion is the importa~lce  of selecting a formal methods tool appropriate to the task.
A full discussion of factors influencing tool selection can be found in [Rus93a], and a
summary is available in Volume 1 of this guidebook [NTASA-95a].

2 .3 .2  Scope  o f  Formal  Methods  Use

‘The three most commonly used variations in
are listed here; others arc certainly possible.

the scope of formal methcjds application



]. Stuges of the development life cycle
Generally, the biggest payoff from formal methods usc occurs in the early life cycle
stages, given t}lat  errors cost more to correct  as they ~Jroccecl  undetected through
the development stages; early detection leads to lower life cycle costs. Moreover,
formal methods use ill the early stages  provides precision precisely u’here it is
lacking ill conventional dcvelo~)l~lcnt  methods.

2. SgslenL  components
Criticality assessments, assurance considerations, and architectural characteristics
are among the key factors used to deterlnine  which subsystems or components
to analyze with formal nlethods.  Since large systems are typically composed of
components with widely differing criticalities,  the extent of fornlal  methods use
should be dictated by ~)roject-specific  criteria. For example, a system architecture
that provides fault containment for a critical component through physical or logical
partitioning provides an olwious focus for fornlal methocls activity and enhances
its ability to assure key systenl  properties.

3. System functionality
Althcmgh  formal mctllods have traditionally been associated with “ljroof  of cor-
rectness, ” that is, ensuring  that a system component meets its func~ional  speci-
fication, they can also be applied to oI~ly  the most important systenl  properties.
Moreover, ill some cases it is xnore important to ensure that a component does
not exhibit certain negative prol)erties  or failures, rather than to prove  that it has
certain ~)ositive l)ropcrties, including full functiol]ality.

2.4 Reasonable Expectations for Formal Methods

A formal methcd  is llcither  a panacea, nor a guarantee of a superior product. Realistic
expectations are a functioll of the designated role(s) and extent, of formal methods use
and of the project resources allocated to the formal methods activity. Judicious, skill-
ful application of forlnal methods can cletect faults earlier than staudard development
processes, thereby greatly reducing the iucide~lce of mistakes in interpreting, formal-
izing, and implementing correct requirements at~d high-level designs. Because formal
methods encourage a systematic enumeration and ex~)lorat ion of cases, they encourage
the early discovery of faults in requirements or high-level designs that would otherwise
be discovered only d uri ug prc)grammiug. Of course, the same claim can be made for
pseudocode, dataflcnv d iagl allls, or other quasi-formal not at ions that can be used early
in the life cycle.

The advantage of for[[lal  methods is that by concentrating on what is required, they
focus more direct ly on the topic of interest and avoid the distractions entailed by imp-
lementation  factors. St rol~ger claims can even be made for fully formal techniques.
Equally judicious, skillful applications of the most rigorous jormal methods can detect
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more  faults than would otherwise be the case and, in certain circumstances, subject
to certain caveats, they catl also guarantee the abselIce of certaiu faults. III ~Jarticu-
lar, by working car]y in the life cycle, on reasonably abstracted representations of the
hardest part(s) of tllc cwcrall problexll,  the hi.gllcst-level formal mctllods can validate
crucial elements of the requirements or higlklcvel design. Finally,  ill contrast to such
techuiqucs as direct execution, prototyping,  and sinlulation,  wl)ich  call cxl)lore a large,
but necessarily incompleteset  ofsystcm behaviors, deductive formal methods ald state
exl)loration  techniques support exhaustive cxamiuation  of all bellaviors.~  The ext,ent
to which a project realizes some or all of tile benefits  described here deymds  oIl the
availability of essential resources, the skill with which formal methods use is tailored
to the application, aud the dcgrm to which the exl)ec.tatiolls  fit the dimensions of the
~)roject.

2.5 The IWethc}d Underlying Formal Nlethods

In the context of an engineering discipline, a method describes the way i~l
ulhich  a process is to be conducted. In the context oj system engineering, Q
method is defined  to consist oj (l) an underlying model oj development, (.2)
Q language, or languages, (3) defined, ordered steps, and (4) guidance for
applying these in a coherent manner.

Most  so -ca l l ed  jorrnal  ?nethods do not address all  oj these is-
sues.. .. Indeed, tllejor~nal  ~netlLods co7~L~~tu~Lity  ltashee~l sloulto  address such
methodological aspects.5 [H~95b, p. 2]

Although the four elements in the preceding definition may be somewhat controver-
sial, the observation that tllerc  is a paucity of method in formal methods is not. The
observation focuses in ~)articular 011 tllc a~)parent  absence of “defined, ordered steps”
and “guidance” in applying those methodical elements that have been identified. One
reason for the absence c)f method is that the intellectual discipline involved ill modeling,
slJecification,  and verification eludes sim~)lc characterization; the intuitic)ll  that guides
effect ivc abstraction, succiuct spccificat ion, and adroit proof derives froxn skill, talent,
and experience and is difficult to articulate as a process.

F;xceptions  to this observation include specialized methodologies for particular ap-
~)]ication areas, such as the area of embedded systems -- reactive systems that oper-
ate continuously and interact with their elwironmc!nt,  including l)arnas’s “four vari-
able method’) [vS90, vSPM93], NRI~’s Software Cost Reduction (SCR) method [FC87,
HBGL95], the Software Productivity Consortium>s Requirements Engineering (CORE)

4State  exploration techniques require a “downscaled”  or finite state version of the system and typ-
ically involve a more concrete representation than that used with theorem provers or proof checkers.
These and related topics are discussed in Chapter 6.

5Thc material quoted here is based on a discussion in [Kro93].
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method [FIIM7K92],  and Harel’s  Statecharts  [Har87, H+ 90] and its derivatives, such
as Levmon’s Requirements State Machine Language (RSML)  [1. HIIR94].  Historically.
the methods devclo})ed  for reactive systems have ~)rovidecl  organizing principles, com
ce~)tual  models, and in many cases, specification latlguagcs,  and systematic checks for
~vell-formeclness of speciflcatiolls.  Although many of these lncthodologies  ~)rovide some
mechanized analysis and arc currently exploring additional mechanized checks, few have
yet to provide the range of analysis available in a true theorem prover  or proof checker.

Although the method i~nplicd in formal methods has been slow to emerge (with the
exception of the methodologies noted above), broad outlines that effectively constit utc
an “U1lderl~iIlg  model of development” are worth noting. The process of applying formal
methods to a chosen application typically involves the following phases: chmKkrizz7t.y
the application, modelingfi, specification, analysis (validation), and documentation. The
distinction between phases is somewhat artificial and should not be taken too literally.
For exarnplc,  it is difficult and not particularly imtructive  to determine precisely where
modeling ends and specification begins. Each phase consists of constituent processes.
Again, the enumeration below is suggested, not, prescribed, and the overall process (i.e.,
the four constituent phases) is iterative rather than sequential. For example. character-
ization  of the application may be influenced by consideration of potential models, the
process of specifying the application may suggest changes to the underlying model, or
the process of verifying a key property may trigger changes to the specification or even to
the underlying model. Ideally, documentation accompanies all the phases summarized
here:

. TIIC  Characterization Phase: Synthesize a thorough understanding of the ap~)li-
cat ion and the application domain.

o

0

0

0

Conduct a thorough study of the application, noting key components and sub-
components, i~lterfaces, essential algorithms, fundamental behavic)rs  (nonli-
nal and off-nominal), data and cent ml flows, and operational environment.

Identify and study related work, if any.

Acquire additiollal knowledge of the application domain, as needed.

Integrate the accumulated knowledge into a working characterization of the
application. Some practitioners, especially those working alone, tend to “in-
ternalize” an application, working strictly from mental notes. Other practi-
tioners produce working documents and notes. The culture in which a project
operates in large part determines the artifacts (if any) of this phase. Still,
the importance of this phase should not be underestimated; total immersion
in an application is crucial for developing insight into the most appropriate
]nodels  and the most appropriate sl)ecification and validation strategies. In

—
6As used her-c, the term ‘(model” refers to the mathematical representation of a systeui  that uuderlies

the system’s specification. In this usage, the “models>’ checked by state exploration tools or model
checkers are viewed as spccificatious.
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some cases, such as hardware verification, there is considerable precedent
and there am fairly well-cst  ablished  I )aradigms. There is also a st anclard
paradigm for ~)roving hierarchical s~mcification  chains, that, is, hierarchies of
specifications at different lcve]s  of abstraction (see Section 5.3). However, ill
most other cases, there is often little apldicable precedent and them arc few,
if any, established ~)aradigms.

● The Modeling l’hasc:  Define  a mathcnlatical representation suitable for forlllaliz-
iug the application domain a~ld for calculating and ~)redictil]g the behavior of the
a~)~)lication  in that colltcxt. (See Clla~)tm 4.)

o I;lvaluate l)otential  mathelnatical  re~)resentationsl  considering such general
factors as the level of abstraction, generality, expressiveness, analytical power,
and simplicity, as well as specific factors, such as the computational model,
and explicit (implicit ) represent at ion of state and time. hlechanized tool
support, if any, may also be a factor. The logic underlying a tool may
support the use of certain mathematical representations and discourage the
use of others.

0 Select the l[[atbcxnatical  re~)rese:ltation  most suitable for the application

o Mode] key elements of the application and their relationships. As noted
above, this (sut))process  transitions into the specificatio~l  phase.

● The Specification F’base: Formalize relevant aspects of the application and its
o~)eratiollal  cllvirolLtnent.  (See Chapter 5.)

o l)cveloI) a s~w.cificatiorl  strategy, colLsiderillg  SUCIL factors as llicrarcllical  (IIIul-
tilm’cl)  versus single-level specification, constructive versus descriptive spec-
ificatio~l style (SCC  Section 5.2), and procedural and organizational issues,
such as clc~wlo~)ing reusable theories and common definitions, and specifica-
tion chronology.

o Usi~lg the cllosell  model and specification strategy, compose the specification.

o A~ialyze tl~c syntactic and semantic correctness of the specification.

. The Analysis Phase:  Validate the specification. (See Chapter 6.)

o Intq)ret or execute the specification.

o I)rovc key l]ro~)crtics  and invariants.

o llstatjlish  the consistency of axioms, if any.

o FJstablisll  t}le correctness of hierarchical layers, if any.

● ‘1’he Documentation Phase: Record operative assumptions, motivate critical deci-
sions, docunlellt tile rationale and crucial insights, provide explanatory material,
trace specification to requirements (high-level design), track level of effort, and
where relevant, collect cost /benefit data.



● Maintenance and Generalization: Revisit and modify the specification and its
analysis as required, for example, to ~Jrcdict  tl~e consequences of proposed changes
to the modeled system, to accommodate mandated changes to the modclecl system,
tc) support reuse of the formal specificatioll  and analysis, or to distill general
principles from the formalization and analysis.

l’ormal methods are supported in the s~)ecification  and aualysis l)hases  with lnecl(-
animd tools that perform the steps shown in Figure  2.2. Tools that support user inter-
action typically provide these steps explicitly, whereas tools that, are fully automated
do so implicitly. For example, most state exploration tools are fully automatic and do
not prc)vide  user control of the steps that check for syntactic and semantic consistency.
h4echanized  support for tile modeling phase exists, for example, in some of the infor-
mal object-oriented methodologies and in methods such as SCR. However, mechanized
suplJort  for modeling is not (yet) included in Illost  formal methods (FM) systems and
is therefore not represented in Figure 2.2.

Checks iyntactic  consistency
‘llanslatis  interual representation
into display and outputs formatted text
Checks semantic consistency

by syntactically and semantically
correct s~mcification

and semantically correct specification

Figure 2.2: hlechanical Support for Specification and A1lalysis Phases of FM.

Except for documentation and maintenance, all the phases listed above form the
core of subsequent chapters, beginning with the characterization phase. This chapter
concludes with bacligrouncl  regarding SAFER drawn from requirements documents and
operations manuals typical of the kind of documentation used for developing an initial
characterization of an application and its domain.

2.6 An Introduction to SAFER

Unless otherwise noted, this section is based on the SAFER Operations Man-
ual [S AFER94a].  A more detailed version of the material, along with all figures cited
in this discussion, can be found in Appendix C.
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Figure 2,3: ~~lollt  and back ~~i~r~~s  of SAFER  syst,e,nl WC)I-11 by NASA crcwmel~~t)cr.

SAFER,  as shown in Figure  2.3, is a small, lightweight propulsive backpack sys-
tem desigl]cd  topro~'ide  self-rescue  cal)al)ility  toa NASA space  crewmendje  rseparated
during an EVA. ‘This could be necessary if a safety tether broke  or was not correctly
fastened during an EVA on a space station or on a Space Shuttle Orbiter docked to a
s~)acx!  station.  SAFF.l L provides au attitude hold ca~)ahility and sufficient propellant to
automatically dctumble atid (manually) return  a separated crewrmember.  A flight test
versio~l  of SAF13R was flown on S1’S-64 and STS-76, and production variants nave been
used on the initial MIR docking flights.

The SAFER flight unit. weighs approximately 85 pounds and folds for launch, land-
ing, and on-orbit stowage inside the Orbiter airlock. SAFER attaches to the underside
of the Extravehicular Mobility Unit (EMU) primary life-support subsystem backpack,
without limiting suit mobility and is controlled by a single hand controller attached to
the EMU display and control module.

The hand controller contains a small liquid crystal display (LCD), two light-emitting
diodes (LEDs),  a small control unit with three toggle switches, and the hand controller
grip, as shown in Figure C.4. The displays aud switches  are visible frcnn all possible ‘
head positions inside the EMU helmet, and the switches are positioned for either lcft-
or right-handed operation. The functions of the three displays and t hrce switches are c

as follovrs:

1. Liquid Crystal Display: A 16-character, backlit LCD displays prompts, status
1

information, and fault messages.

R

s

s
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2. I,ight-emitting L)iode:  A red LED lat)elcd “TIIR”  lights whenever a thruster-o~l
condition is dct ectcd by the cent rol software.

3. L,igllt-ex~littillg  Diode: A green I, RI) labeled “AAII>’ lights whenever automatic
at t it udc hold is enabled for one or more rotational axes.

4. Switch: A three-position toggle switch labeled “I’J$7R’) l)owcrs  on SAFER and
initiates the self-test or activation test functions.

5. Switch: A three-position momentary toggle switch labckd “DISP>’ controls the
LCD display, allowins the crewmember to select the previous or next parameter,
message, or test step. The switch springs back to the center (null) position when
released.

6. Switch: A two-position toggle switch Iat)eled “h40D13”  selects the hand controller
mod<!  associated with rotation and translation commands.

The hand cent roller is a four-axis nlechallism  with t hrec rot ary axes at Id one t rans-
verse axis. To generate a command, t hc crewnmnber  moves the hand cent roller  grip
(mounted on the right,  side of the hand controller module) from the null center posi-
tiol~ to mechanical hardstops on the hancl controller axes. q’o terminate a command,
the crmvmember  returns tile hand controller to the center position or releases the grip
so that it automatically springs back to the center. Figures C.5 and C.6 illustrate
the baud controller axes for translational and rotational commands, respect ively. For
exaniple,  Figure C.5 indicates that with the control switch  set to translation mode.
~ Y commands are generated by ~)ulling  or pushing t llc gri~)  right or left, res~xxtivcly.
Careful study of these figures reveals that the X translation command and the pitch
rotation command are always available in either mode. A pushbutton switch on the top
of the hand controller grip initiates and terminates automatic attitude hold.

‘The avionics software processes inputs from the hand controllers and various sensors,
and includes the following components:

1. Control Electronics Assembly (CEA):  The C13A microprocessor takes inputs from
sensors and hand controller switches and actuates the appropriate thruster valves.

2. Inertial Reference Unit (IRU): The IRU senses angular rates and linear accelera-
tions and is central to the attitude hold capability.

3. Data Recorder Assembly (DRA):  The DRA collects flight-performance data, hand
controller and automatic attitude-hold commands, and thruster firings.

4. Valve Drive Assemblies (VDAS): Each of the four VDAS,  located with a cluster
of six thrusters, takes firing commands from the CEA and applies voltages to the
selected valves.
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5. Power Supply Assembly (PSA): ‘1’hc I)SA produces regulated electrical power  for
all SAF13R electrical coln~mnents.

6. I1~strllll~elltatioll  Electronics: SAFER instrumentation includes a variety of sen-
sors, all of which arc listed in Table C. 1.

The avionics software has two princil)al  functions: maneuveri~ig  colLtrol  for both
commanded accelerations and automatic attitude hold actions, and fault detection,
which supports inflight  operation, pre-k;VA  checkout, and ground checkout., A brief
summary of tllc control function is prese]lted  here. Sect ions  C.1.4.2 and C.1.4.3
present a more detailed summary of the maneuvering control function atld an account
of tllc fault detection function, respectively.

The maneuvering-control software commancls  bckh rotational and translational ac-
celerations. Translat  iox I commands provide accelcrat  ion along a single translational axis
and are prioritized so that X is first, Y is second, and Z is third. Wrhen  rotation and
translation commands are present simultaneously, rotation takes priority and tratisla-
tions  are suppressed. Conflicting input comlnands result in no output to the thrusters.
Whenever l)ossiblc, acceleration is provided as long as a hand controller or automatic
attitude-hold commancl  is present.

The SAFER crewmember cat) initiate (single-click) or terminate (double-click) au-
tomatic attitude hold at any time via the pushbutton on the top of the hand controller
gri~). When terminated, automatic attitude hold is disabled for all three rotational
axes. If a crewmernber  issues a rotational command for a given axis when automatic
attitude holcl  is active, it is imnlediately disabled for that axis only. However, to ensure
that,  a failed-on hand controller command ill a rotational axis will not disable automatic
attitude hold on that axis, automatic attitude hold takes precedence over a crewmen~ber-
issucd rotational comnland if the two arc initiated simultaneously. Automatic attitude
IIold  provides an automatic rotational deceleration until all three axis rates are near
zero. These near-zero rates arc automatically nlaintained  whenever automatic attitude
hold is active.

Thruster-select logic t akcs accelcrat ion commands from the hand cent roller and
from the automatic attitude-hold function, creates a single acceleration command, and
chooses thruster firings to achieve the commanded acceleration. Thruster selection
results in on-off commands for each thruster, with a maximum of four thrusters turned
on simultaneously. llu-uster  arrangement and designations are shown in Figure C .3.
Tables C.2 and C.3 specify the selection logic.

SAFER has 24 gaseous nitrogen (GNz)  thrusters - four thrusters pointing in each of
the +X, *Y, and + Z axes. The t hrustcrs are arranged in four groups of six thrust crs
each, located as shown in Figure C.3. As l~oted,  thruster valves open, causing the
thrusters to fire in response to directives from the avionics subsystem, which commands
as manj as four thrusters at once to provide six degree-of-freedom maneuvering control
(+X, +Y, +Z, +roll, +pitch, +yaw).  The SAFER propulsion system provides a total
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delta  velocity of at least 10 feet IJCr second  with an initial cllargc. ‘Tllc four GlV2
tanks have a relatively small capacity and require several recharges during an EVA.
The recharge station is located ill the Orbiter payload bay. Whe~l  SAFER is ]Lot  itl use
or if a malfunction (such as a failed-”oil thruster) occurs, the tauks  can be isolated via a
mauually  actuated isolatiou valve.

The SAFER example introduced here! is used throughout the guidebook to illustrate
key ~)oiuts  in each chapter. Although this example attempts to formalize the actual
SAFER design, pragmatic and pedagogical considerations have inevitably resulted in
differences between the act ual design atld the formal specification. These differences
do not detract from the presentation of a realistic example that captures the basic
characteristics of a class of space vehicles and the computerimd  systems that control
them. The fragment of the example chosen for inclusion at the end of each subsequent
chapter focuses on the thrush’ sektioIl  function responsible for creating an integrated
acceleration commalld  fronl hand controller and automatic attitude-hold inputs.



Chapter 3

Requirements

Requirements define  the set of conditions or capabilities that must be met by a system or
system component to satisfy a contract, standard, or other formally imposed document
or description [SFN7]. For example, IEEF, Standard 149S [I EEE194,  p. 7] defines a
requirement as “a characteristic that a systcm or software item must possess i~~ order
to be acceptable to the acquirer.” Similarly, the NASA Guidebook for Safety Critical
Software Analysis and Development [NASA-96, p. A-18] defines software requirements
as “statements describing essential, necessary, or desired attributes. ” In the context of
this guidebook, requirements are taken to be a statement of the essence of a system that
is typically produced at or near the beginning of the life cycle and guides and informs
the development, implement at ion, and maintenance of that system. 1 The number of
st,e~~s between  rcquirelncnts, capture, and ir~l~}le~t~c:~ltatiolI  depends 011 the life cycle
process for the system. Arguably, the more clearly articulated and differentiated the life
cycle phases are, the more likely it is that the requirements statement will be suitable
for formal analysis. A well-defined life cycle reflects a mature process, including an
appreciation for the role and task of quality assurance. For example, a fairly typical,
mature life cycle process might include requirements definition, system design, high-level
design,  ]OW-]CW1 cles@l, coding, testing (unit testing, component or function testing,
systcm testing), user support, and maintenance.

There are many considerations in the elicitation, capture, modeling, specification,
validation, maintenance, traceability, and reuse of requirements, and a burgeol~ing group
of researchers i~herested  in addressing these and related issues. This activity has led to
the recent emergence of a “discipline’ ) [FF93, I). vi] known as “Requirenlents 13ngineer-
iug” that attempts to establish “real-world goals for, functions of, and constraints on
software systems” [Zav95, p. 214] a~~d includes researchers in the social sciences as well
as ill several areas of com~)uter  science.2

1 This and similar remarks in Section 3.1.1 are not meant to suggest a particular life cycle model
‘Representative papers may be four,d  in the proceedings of several IICIV  conferences, including the bi-

ennial international symposium first held in 1993 [FU393,  R1395] and the biennial international conference
first held in 1994 [ICR1394,  1CRE9G].

17



18

3.1 Requirements and Formal Methods

This guidebook takes a less generic interest in requirements, focusing here on require-
ments as objects of formal analysis and, in particular: the characteristics of requirelnent,s
that infiuencc  the ap~dication  of formal methods, ancl conversely.

3.1.1 Impact of  Requirements Specification on Formal Methc)ds

The most important characteristics of requirements as objects of formal analysis ate the
level at which the requirements are stated, the degree to which they are explicitly and
unambiguously enumerated, the extent to which they can be traced to specific system
components, and the availability of additional information or expertise to ~Jrovide the
rationale tc) motivate and clarify the requirenlents  definition (as necessary).

3.1.1.1 Level of Requirements Capture

Requirements for the early stages of the lif[! cycle, that is, up to and illcludiu~ the hi,gh-
level design phase, should be reasonably abstract and focus on basic characteristics,
including essential behaviors and key properties of the system. At this level, inqdenlen-
tation considerations and low-level detail tend to distract ouc from the basic system
functionality. Requirements written at too low a level or with too strong an inlplenlen-
tation bias may require reverse engineering befc)re forlllal  methods can be productively
applied.

3.1.1.2 Explicitness of Requirements Statement

Requirements should also be completely, precisely, and unambiguously stated. At this
level, the idea is to have a clear, precise statement that is reasonably complete and
doesn’t admit multiple interpretations. This appears to cent radict the p!evious  point,
that the requirements be reasonably abstract and distill only essential behaviors and
pro~)ert  ies, but t}lere is really no cent radict  ion. Clarity, precision, and completeness
iuvol~~e  explicitly identif.yiug  underlying assumptions and thoroughly enumerating all
relevant cases rather than specifying low-level detail and i~~ll)lex~lclltatioll  factors. Am-
biguous requirements that cannot bc further clarified may require the formal methods
practitioner to define and explicitly record a set of operative assumptions to initiate the
formal specification and aualysis. Ultimately, any operative assumptions, as well as the
requirements specification, should bc validated.

3.1.1.3 Clarity of Delineation between a System and Its Environment

Requirements should clearly state the assutnptiom a system makes about its operat-
ing envitolInlcnt  and should clearly delineate the boundary between the system and its
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operative context. Fbr example, rcquirmncnts  should explicitly identify environn~en-
tat quantities that the system measures, cent rols, or assumes, such as temperatures,
pressures, and user interface assumptions [HE\95a,  p. 23].3

3.1.1.4 Traceability of Requirements

System-level requirements should be traceable to identifiable (functional) subsystems,
components, ox interfaces. Requirements that cannot be so traced  may prove diffkwlt
tovalidatei  ~~sofara  stlleys  lJecifys ystclll-levell >roIJertiesor  t)ella~riortllat  istoogcmeral
or too ill-defined to he formally analyzed.

3.1.1.5 Availability of Underlying Rationale and Intuition

Requirements should also contain background material that motivates and illuminates
the requirements statement. Although such material is typically excluded from require-
ments documents, it is often possible to find domain expertise, project personnel, and
artifacts that provide essential information and insigl]t. Such supplemental lnatcrial  is
crucially important if the requirements statement is low-level, implementation-oriented,
illco~nplete.  or ambiguous.

It is unusual to be handed a set of requirements that is well-suited to formal specifica-
tion and analysis. Although formal methods provide techniques and tools for distilling a
set of requirements from informal or quasi-formal spccificat ions and for exposing missing
or incomplete requirements, formal methods are not a panacea. The practitioner should
factor ill the availability and suitability of rcquircmcmts  doculnents when considering a
formal methods a~)j)licatioll.

To illustrate. consider briefly the experience recounted in [NASA93], which describes
an attempt to formalize the official Level C requirements for the Space Shuttle Jet-Select
functioll [Roc9] ]. Although Space Shuttle flight software is exemplary among NASA
software devclol)r[lent  ~)rojects,  the requirements analysis and quality assurance in early
life cycle phases of tllc Shuttle used then-current (late 1970s and early 1980s) products
and tools. Shut t k’ soft ware requirements are typically written as Functional Subsystem
Software I{rxluirellleIlts  (FSSRs) - low-level software requirements specifications written
in English prose mid accompanied by secondary material inc]uding pseudocode, and
dia~rams and fiowc}iarts  Tvith  imhousc  notations. Interpreting the Jet-Select FSSR
doc~&lents required the combined efforts of a mult icenter  team for several months and
relied extensively OX] resident expertise at IBM Federal Systems Division.4  WUlen  a

.——
3This  paraphrase of a statcmcmt  by Parnas, who has been among the most vocal  advocates for all

explicit delineation bet ~veen  a system and its wvironment,  MZIS  made in the context of computer soft ~rare
systcwls, but the rmnark  applies equally to other types of systems.

4The rnu]ticentel  team consisted of personnel from N’ASA’s Jet Propulsion I,aboratory,  Langley
Research Center  (LaRC).  a!ld Johnson Space Center, and included subcontractors from Lockheed Martin
Space hfission Systems (formerly Loral,  and, prior to that IIILI, Houston) and SRI International. (The



20 Chaptm 3

new set of high-level Jet-Select requirements was formalized in the PVS .sI)ecification
language, it bccameclearthat  theJ&-Select function could twstated  mores imply. TCI
validate the PVS specification, approximately a dozel~ lemmas, derived from a list of
high-level Jet-Select properties identified by IBhI, were formalized and proven. The
fact that the algorithm and its essential properties are difficult to discern from the
FSSRS illustrates two comldcnlentary  points: (1) the potential problems of low-level
requirements that only implicitly capture key prol)erties  and essential functionality,
and (2) the valueof  supplemental sources and materials to provide crucial information]),
for example, the list of desired Jet-Select properties and the clarifications provided by
IBM domaiuexperts.5

3 .1 .2  Impact  o f  Formal  Methods  on  Requirements

l’he applicat ioll of formal methods typically produces tangible artifacts, including for-
mal models, specifications, aud analyses, that can impact the requirements to which
they are applied. The nat urc oft he impact depends on the strategy used in the require-
~nents development process, and in particular, the degree  to which formal methods are
integrated illto the existing process.

Fraser aud his colleagues [FKV94]  attempt to classify integration strategies with
respect to the following factors:

1. Does the strategy go directly from the informal recluirements  to the formalized
specification or does it introduce intermediate and increasingly formal models of
the requirwncllts?

2. If the strategy introduces intermediate (semiformal) models, is the process OILC of
parallel, successive rcfiuement  of the requirements and the formal specification, or
are the formal specifications derived after the (semiformal) requirelnents  models
have been finalized in a sequential strategy?

3. 10 what extent does  the strategy offer mechanized support for requirements cap-
ture and for~~lalizatioll?

The question of mechanized support for requirements capture and formalization re-
mai~ls  somewhat academic, since the fully automatic characterization of requirements
still relies primarily on research tools with limited scope and scalability. one exam-
ple is a knowledge-based “specification-derivation system” that uses difference-based
reasoning and analogy mapping to recognize and instantiate schemas and interactively
-—.  —.. _.
work cited here was completed prior to either the Loral  or Lockheed Martin er~$, hence the references
to IBM.)

‘This example also illustrates the fundamental cost/benefit trade-offs that invariably arise Whell
substantial reverse engineering is required before fornlal methods can be applied. These and related
planning issues are discussed in Volume I of this guidebook [NTASA-95a].
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derive  specifications in a language  similar to the Larch Shared Language [FKV94,  p. 82].
Another example is the use of clata-flow  diagrams and decision tables to develop “Struc-
t ured Analysis” specifications that are then translated in VDM specifications by means
of “interactive rule-based algcwithmic methods” [FKV94, I)p.  84-5].G

of more immediate interest are the strategies that use an iterative a~)proacll to the
successive refinement. of requirements. An example of the sequential applicatioll of the
iterative strategy is the use of formal methods in certain re-engineering projects where
the requirements are mat ure and well-established. However, it is the parallel application
of the iterative strategy that, most substantively impacts the require~nellts  definition.
AIL example of this type of application includes formalization of immature requirements
or formalization of requirements for ill-defined or ill-structured problem domains. In
these cases, there is the “l)otential  of lcttiug semiformal and formal specifications aicl
each other in a synergistic fashion duriug the requirements discovery and refinement
process” [FKV94, ]). 82]. lf this synergy is positive, the formal xnodels,  specificat  iolls.
and analyses may ultimately become (part of) the requirements- a development some
would applaud and others would view wit h concern. For example, Parlms [H B95a, p. 21]
notes that “Eugiueers  make a useful distinction between spcxificatious,  descriptions, and
models of products. This distinction seems to be forgotten in the computer science lit-
erature . >’ ‘This may be similarly applicable to requirements, models, a~ld s~)ccifications.
On the other hand, active research into formal  semantics and automated reasoning
frameworks for industrially used notations [RS93,  p. 191] points toward a coalescence
in some environments of informal requirements with their formalization and analysis.

3.2 Conventional Approaches to Requirements Validation

It is well recognized that identifying and cor~ecting  problems in the requirements and
early-desig~l  phase avoids far more costly fixes later. It is often said that late life cycle
fixes are 100 times more expensive thau corrections during the early phases of software
development [Boe87,  p. 84]. Focused arguments for the utility of software-requirements
analysis and val idat ion have become increasingly common. For example, Kelly [KSH92]
documents a significantly higher density of defects found during requirements versus
later life cycle inspections. IJutz  [ljut93]  notes that of roughly 195 “safety-critical” faults
detected during integration and system testing of the Voyager and Galileo spacecraft,
3 were programming bugs, 96 were attributed to flawed  requirements, 48 resulted from
incorrect implementation of the requirements, aud the remaining 48 faults were traced
to misuuderstoocl interfaces.

Standard approaches to requirements analysis and validation typically involve nlan-
ual ~)r-ocesses  such as “walk-throughs” or I%gan-sty]e  inspections [Fag76, Fa.g86]. The
term walk-through refers to a range of activities that can vary from cursory peer reviews
—— ——.

‘The relative immaturity of these particular activities does not reffect  on the aclino}viedged  maturity
of formal methods techniques in general. See, for example, [Gla95,  N!c195].



to formal  inspections, although walk-throughs  usually do not involve the replicable pro-
cess and methodical data collection that characterize Fagau-style  inspections. Fagan’s
highly structured inspection process was originally developed for hardware logic. next
apldied  to software logic design and code, and ultimately successfully aplJlied to arti-
facts of virtually all life cycle phases, inducting requirements development and high-level
design [Fag86, p. 748]. A F’agan inspection involves a review team with the following
roles: a Moderator,  an Author, a Reader, and a Tesicr. The Reader presents the design
or code to the others, systematically walking through every piece  of logic and every
branch at least once. The Author represents the viewpoint of the designer or coder, and
the perspective of the tester is represented, as expected, by the Tester. The hloderator
is trained to facilitate intensive, but constructive and optimally effective, discussion.
When the functionality of the system is well-understood, the focus shifts to a search for
faults, possibly using a checklist of likely errors to guide the process. The inspection
l)rocess  includes equally intense and highly structured rework and follow-up activities.
One of the main advantages of Fagau-style inspections over other con~’entional  forms of
verification and validation is that they can be applied early in the life cycle, fol example,
to requirements and high-lcwl  design. Thus potential anomalies can be detected before
they become entrcmchcd in the 10 W-1CVC1 design and itll~~lell~elltatioll.

NASA supports a ~)rocess  derived from Fa.gan inspections, called “Software Formal
Ins~mctions”  [NASA-93b, NASA-93a] that uses teams drawn from peers involved in de-
velopment, test, user groups, and quality assurance. The scwen-step  NASA process
spelled out in [hTASA-93b] consists of planning. ovcrviev’, preparation key, inspection
meeting, rework, and follow-up stages. NASA inspections use checklists, as well as
stanciarclizcd  forlns to recorcl ~moduct  errors allcl collect metrics associated with the
inspection process. g’he Colh!ction and monitoring of lnetrics  is an integral part of
NTASA’S  inspection prc)cess bccausc it documents the progress of a project. If reiu-
sl)ect ion is requirecl.  scwcral of the steps may be repeated. With  small variations, the
NASA inspection process is USCC1 at several NASA centers, including the Gc)ddarcl  Space
Flight Center  (G Sl~C).  Jet I’rol)ulsioll  laboratory (JPL) [Bus90],  Johnson Space Cen-
ter (J SC) 7, I,an@y Research Center (LaRC), and Leu’is Research Center  (LeRC).  The
current validatic~ll  I)rc)cess for N’ASA’s Space Shuttle flight  software includes C1OSC ad-
herence to the ins~)cct io~l  process for requirements, high-level test plans, and source
code [NASA93. ]). 21].

Although tllcxe processes are considered eflectivc and the quality of NTASA  slluttlc
flight softu’are  is a?llong the highest in NASA software development prc)jects,  the re-
quirements analysis seems less reliable than the analyses performed on later life cycle
products. F’or examl)le.  [Rus93a,  p. 38] notes that “a quick count of faults detected and
eliminated during dcwlopmcnt  of the space shuttle on-board software indicates that
about 6 t itnes as n Iany faults ‘leak’ through requirements analysis, than leak through

‘~’he foruia]  inspectiorls  cited here are actually used by Locliheed  hlartin Space Information Systems
(formerly, Loral and, prior  to that, IFlhl, Houston), the Space Shuttle soft~rare  subcontractor.
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the processes of code development and review.” III light of these and similar obser-
vations,  the following characteristics of the requirements  analysis process have been
uoted [NASA93,  p. 9, 22]:

. Current techniques are largely  manual and highly dependent on the skill ancl
diligenceof  individual  inspectors and review teams.

● ‘l%ere  is no methodology to guide the analysis process and no structured way for
Requirement Analysts (RAs) to document their analysis. There are no completion
criteria.

. Although these techniques catch a substantial number of defects, the density of
defects found suggests that some errors escape detection.

● NASA projects using currently available techniques have reached a quality ceiling
on critical software subsystems, suggesting that innovations are needed to reach
new quality goals.

These types of issues constitute a significant part of the rationale for exploring the
use of formal  methods to complement and enhance existing requirements analysis and
design analysis processes for critical aerospace and avionics software systems.

3.3 SAFER Requirements

I’he set of SAFER flight operations requirements used in this document are derived
from three ofllcial project documents:

● Project Require~ncmts  I)ocument [SAF’ER92]

●  I’rinlc  Itmn Developnlent  S~mcification  [SAFER941)]

● operations Manual [SA1’ER94a]

‘1’he derivation of these requirements illustrates challenges that typically confront
efforts to formalize requirements for real-world systems. For example, the Project R+
quirements  Document provided brief characterizations’ for major components and func-
tions. Requirements at this level,  such as those reproduced below, provide background
information, but they are at too high a level to be useful in the development of formal
specifications.

● The SAFER Flight Test Article shall provide six degree-of-freedom manual n~a-
ncuveritlg  control.



● The SAFER Flight q’est Article shall provide crcwll~cl~lber-selectable.  three degrec-
of-freedom Automatic Attitude Hold (A AH).

The Prime Item Developmmit  S1)ecification,  while  more  informative, lacks detail  ill
certai~l  critical areas. In gclmal,  the O1)erations  hlatmal, which was not, intended as a
requirements document, provides t hc most consistent )y useful  in format  iou. Ultimat cly,
synthesizing tllc material from two of tllc three sources was necessary first in order to
characterize a system that, could be meatlingfully  formalized. A subset of the require-
ments from the Prilne Item Development Spmificatiou  w’as augmented with more details

from t hc O1)erat ions h~anual.  This inherently subject ivc process, described here, was
guided by the need for requirements that, provided a workable level of detail basecl on
a well-defitled systenl  architecture. If existing requirements documents directly support
the applicatioll  of formal methods, or if domaill expertise is readily available, the process
dcscrihed here would not, bc necessary for formalization and analysis.

Tile subset of the recluirements  presented here (numbers 37 - 42) focuses on the
thruster-select function of the avionics software. Only the requirements that directly
sl)ecify  thruster selection have beml i~lcluded;  those  indirectly iuvolved,  such as the
requirements that specify components providing thruster-selection input (the hand com
troller unit) and output (the propulsion subsystem), appear iu Section C.2, which coll-
tains the full set of SAFER requirements.

Requirements 37 - 42 below specify the two basic tllruster-select functions: (1 )
integrating the in~nlt from the hand controller and automatic attitude hold (AAH) into
a single acceleration command and (2) selecting the set of thrusters to accomplish the
command. This functionality is specified through a combination of high-level “shall”
state;  nents aI~cl lower-level tables that clcfilie the thruster-select logic. The nuuli)ers
associated with each requirement correspond to those used ill Appendix C.

37. The avionics software shall disable A AH on all axis if a crewmember rot at ion
command is issued for t}lat axis w~lilc  AAII is active.

38. Any hand controller rotation command present at the time AAH is initiated shall
subsequently be ignored until a return to the off condition  is detected for that axis
or until AAII is disabled.

39. Hand controller rotation cO1lllllaUds  shall suppress any translation commands that,
are present, but A AH-gcncrat ed rot at ion commands may coexist with translations.

40. At most one translation comu~and shall be acted upon, with the axis chosen in
priority order X, Y, Z.

41. The avionics software shall provide accelerations with a maximum of four simul-
taneous thruster firing commands.

42. l’he avionics software shall select thrusters in response to integrated A AH and
crew-generated comma]lds according to Tables C.2 and C.3.



Chapter 4

Models

The term  nlodel  is usc!d in two diffcrcmt,  alt)cit  related, ways in the context of formal
methods. On the one hand, “model”  is used to refer to a mathematical representation
of a natural or man-made systc~l~.  This is consistent with tile usage in science and engi-
neming,  where mathematical representatio~ks are used to predict or calculate prol)ertim
of the systems being modeled. Tile statistical models used to analyze and predict llle-
teorological phenomena and the models of ~)lanet  ary mot ion used to calculate satellite
launch trajectories and orl)its  are examples of these types  c)f mathematical nlodels,  as
are the state machine models used  to explore the behavior of complex hardware a~ld
soft warw systems.

A second usage of tile term “model” derives from precise terminology in formal logic
and refers  to a mathmnatical reprcmlltatioll that satisfies a set of axioms. Exhibiti~lg a
model for a set of axioms demonstrates that the axioms are consistent. For example,
one way to show that a specification is consistent is to show that its axioms have a
model, as discussed in Chapter 6.

This chapter surveys characteristics of the types of mathematical models used in for-
ma] methods and concludes with a discussion on modeling the SAFER thruster selection
function.

4 . 1  IMathematical NIodels

Wllilc there is no ambiguity about the meaning of the term “model’ ; il ~ the formal logic
sense, and lit t le confusion about its informal use in the real world of concrete objects,
there is residual confusion surrounding the informal use of the term to refer to nlathe-
matical objects. For example, when speaking of real products, such as jet planes, there
is I1O problem in distinguishing the notions of Inodel,  prototype, specification, and de-
scription. A model of a 747 may or may not be flightworthy  and fit on a desk. 1 A

1 Jackson [Jac95,  pp. 120-122] follow Ackofl [.AM2]  ixl distinguishing three kinds of model:  iconic,
analogic, and analytic. Using this three-way distinction, the  model of the 747 is iconic, that is, the
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prototype, on the other hand, would be one of the first 747s built and would cxllit)it
most, if not all, key properties of the actual 747 aircraft, including the ability to ac-
commodate 350 passengers. A specification of the 747 would capture certain important
l)roperties of the 747, l)ossibly  includi]lg  the property that dimensions of the wing stand
in a certain relationship to the overall dimensions of the plane. A description is the
least constrained representation] and may even include such useless detail as the fact
that the plane  has a rather bulbous profile. 2 ~n the other hand, Parnas’ definition of a
model as “a product, neither a description nor a specification. ” [Par95~ p. 22] explicitly
acknowledges a confusion in the context of formal methods, where models and specifi-
cat ions are frequently conflated.  Concurrency provides a case in point. “It’s not that
one usually wants to specify concurrency, but rather to study the properties c)f a model
of concurrency resulting from a specification of a system.” [CS89, p. 89]

4 .1 .1  Character is t i cs  o f  Mathemat ica l  Models

In the context of forulal nwthods, the II1OSL useful  nlodels  tend to be abstract represen-
tations that focus on essential characteristics expressed in reasonably general ternls and
forn~alized  in judiciously chosen nlathenlatics,  that is, in nlathen]atical representations
that are suitably expressive and provide sufficient analytic power. Of course, accuracy
with resl)ect  to the system being modeled is also essential.

4 .1 .1 .1  Abstract ion

Exploring the relationship between modeling and specifying a concrete (ph~rsical)  object,
such as the 747, yields insight into desirable characteristics of abstract (mathematical)
models. For example, while it is possible to build a full-scale model of the 747, it is
almost certainly more useful to abstract  away less important or less relevant features of
the 747 alld concentrate on the simplest or most general ex~)ression of essential features
of interest. Two highly desirable consequences of creating suitably abstract models arc
the elimination of distracting detail and the avoidance of pmniature i~~lple~l~er~tatiol]
commitments. For example, imagine using a desk-size model to discuss properties of
the overall design, that is, the layout and proportions of the aircraft, and of certain
components, such as the shape of the fore and aft sections of the wing, while ignoring
pro~)cxties  relating to the aircraft’s size or to the structural materials used to build it.

The choices of mathematical represcutation  and level of abstraction carry inher-
ent implications that must be explicitly considered. For example, Hayes describes the
implications of certain choices for modeling a simple symbol table.
—— — ——
747 model is an icon of a real plane. See Section 4.1.1.3 for a brief discussion of analogic  and analytic
models.

2The 747 example is based on a discussion in [Par95].
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‘(We are describing a symbol table by modeling it as a partial function. . . .
Here . . . we use it [the function] to describe a data structure. There may be
many possible models that wc can use to describe the same object. Ot hcr
models of a symbol table could he a list of pairs of symbol and value, or a
binary tree containing a symbol and value in each node. But these other
models are not as abstract, because many different lists (or trees) can relJ-
rcsent, the same ful~ct  ion. Aud we would like two symbol  tables to be equal
if they give! the same values for the same sylllbols.” [Hay87, p. 39]

4.1.1.2 FOCUS

A model defines the space that can be explored by virtue of the (concrete or abstract)
representation choices it reflects, but it does not prescribe the exploration per se, which
is the role of the specification. The desk-size model of the 747 facilitates certain kinds
of questions and precludes others. These limitations are a direct consequence of the
nature of the model, reficct  ing choices with respect to both focus and mathematical
representation. For exatnple,  the desk-size 747 does not lend itself to a study of either
the safety ~Jropcrties  of the airplane’s fly-ly-wire  system or the tensile pro~mrtics of
production-grade materials. The same tyl)e of caveat applies to the abstract models
used in formal methods. “AS with any model, we will have to deterlnine what aspects
of reality we deem important and will have to ignore  others. We must be quite clear.
therefore, on the boundaries of our models” [CS89,  p. 94].

4.1.1.3 Expressiveness Versus Analytic Power

There is inevitably a tension between expressiveness and analytic power, as notec]  in
the following quote [CHJ86,  p. 9].

K
. . . in general, the larger the class of systems that can be described,

tile less is analytically decidable about them. This unfortunate property of
mathematics means that great care and mathematical sophistication must
be applied to the design of models, especially if a lower level of sophistication
is to be expected of the engineers who use them. ”

Although the author of this quote is talking somewhat pessimistically about engineer-
ing models used to conlpute stresses, mass, friction, and so forth and appears to equate
expressiveness and descriptive generality, his observation about the tension between ex-
pressiveness and analytic potential is worth noting. In the context of formal methods,
expressiveness is typically used to refer to the ability to naturally and effectively char-
act erize a behavior or property of interest. Although .generalit y certain ly plays a role, it
is not the only hallmark of expressiveness. The analytic potential of a model is crucial
in formal methods applications because it is precisely the ability to analyze, that is to
calculate and predict, that confers the power and utility of formal methods.



4.1.1.4 Intuitive Versus Nonintuitive Representation

A furthm consideration can be characterized as naturalness of expression. that is, the
extent, to which a mc)dcl  should be intuitively similar to the physical object it represents.
Jackson [Jac95,  pp. 120-122] cites the exatnplc  of an electrical network used to model
the flow of liquid through a network of pil)cs. ‘1’he example is due to Ackoff [Ack62],
who terms it an amdogic  model; the wires are analogous  to the pipes, aud the flow of
current is analogous to the flow of liquid. Ackoff  also identifies a class of models that he
terms  analytic, by which he appears to mcau that the mode] embodies au analysis. For
example, a set of differential equations describing how prices change is analytic because
it expresses the economist’s anulysis  of the relevant part of the economy. ‘1’his is a
somewhat different use of the term “analytic’ ) than that of Cohen (above) and most ,
of the literature on formal methods. Although Ackoff  ’s classification is nc)t  necessarily
advocated here, the notions of aualogic  and analytic content of models are useful.

4 .1 .1 .5  Accuracy

Finally, it is important to be aware not only of the limitations of models used for formal
methods, but also of their accuracy. Just as s~wcification  and analysis are constrained
by the nature of the model, the ultimate utility and validity of the specification and
analysis are limited by the degree to which the model is an accurate repmentation  of
the system modeled.

4 .1 .2  Benef i ts  o f  Mathemat ica l  Models

The advantages conferred by mathematical models are effectively those associated with
the more rigorous levels of formal methods, namely

● Mathematical models are more  precise than an informal description written in
natural language or in quasi-formal notations, sLlch as pseudocode, diagrammatic
techniques, and many CASE notations. One aspect of precision is the need to ex-
amine and make explicit all underlying assumptions; hence, mathematical models
also tend to force a more thorough aualysis.

● Mathematical models can be used to calculate and predict the behavior of the
system or phenomenon modeled.

. Mathematical models can be analyzed using established methods of mathematical
reasoning. The axiomatic method that provides a discipline for proving properties
and for deriviug and predicting new behaviors from those already known is an
example of one sLlch  method, in this case drawn from mathematical logic.3

—————— — . —
3See Chapter 6.
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Grim aud Schneider [GS93,  p~). 2-3] use the cliscovery of the planet Neptune  to
illustrate some of these benefits of mathematical models. Since it is a particularly nice
exalnp]c of tllc calculative a~ld ~)redictivc  power  of mathcnlatical models, the story is
mcouuted here. In t be early 1800s, it was Iloted  that there were discr[!pancies  between
observations of the planet  Uranus ancl tlIe extant mathcur)atical  lllodels  of planetary
motion - largely those  formulated by Kepler, Newton, and others  begiuuing in the
seventeenth century. l’he lnost likely conjecture was that the orbit of lJrauus was being
affect ed by a~l unknown planet. Ix] 1846, after two to three years of feverish manual
calculation, motivated in part by a prim offered by the Royal Society of Sciences of
Gtittingen  in Germaty,  scientists converged OIL the probable position of the uuknowll
pla~let.  That same year, using telescopes, astronomers discovered ATept  ut Le itl the posi-
tion predicted by the models.

4 .1 .3  Mathemat ica l  Models  for  Discrete  and Cont inuous  Domains

in au introductory cha~)ter  to his classic history of mathematics viewed  through the
lives and achievements of the great mathematicians, E. T. Bell notes that

“. . . from the earliest times, two oppositlg twldencics,  sometimes hel~)itlg
one another, have governed the whole involved development of n~athemat-
ics. Roughly these are the discrete aud the continuous.’ ) . . . The  discrete
struggles to describe all nat urc aud all Itlat hemat ics atonlist  ically,  iu terms
of distinct, recognizable individual elemeuts,  like the bricks in a wall, or the
l~umbers 1 ,2,3,. . . . ‘lThe collt  illuous seeks to apprwkmd  llat ural phcmon~e~la--
the course of a Planet iu its orbit,  the flow of a current of electricity, the rise
and fall of the tides, aud a nlultitude of other aplmaranccs.  . . .“ [Be186, p. 13]

This dichotomy is, of course, reflected in the mathematical models used to explore
the respective domains. The introductory comments in earlier sections of this chapter
have becm chosen to apply equally to both discrete and contiguous models, thereby
enll)llasizing  the commonality between the fundamental role of models in both nlath-
ematical domains. Recently, a growing interest iu hybrid systems - that is, systems
composed of cent inuous components selected, controlled, and supervised by digital com-
ponents - has led to an iutcgration of discrete and continuous models. The resultiug
modeks integrate the different ial-difference-  type equat ions used in classical models of
continuous physical systems with the mathematical logic and discrete mathematics used
ill conventional models of digitial systems.4

For most of this chapter, tllc focus will bc the discrete domain models typically used
in formal methods. JVhile the mathematics ex~)loited  in models for discrete domains

4Reprcsentativc  papers may be found in the proceedings of several recent }vorkshops,  includ-
ing [C; NRFt93,  .AKNS95, AIIS96].

—
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is generally simpler thau that for continuous domain models, it is also less familiar to
those  with e~lgilleeritlg t)ackgro~l~lcls.  WTith  this in mind, a small example from control
theory is presented first. The technical details of the example are not inlpoxtant; the
focus here is not on advanced control theoretic methods, but c)n modeling tecl~niqum.

4.2 Continuous l)omain  h~odeling

This discussion illustrates the use of continuous rnathema~ics  to n~ode]  an exam~)le
drawn from spacecraft attitude control. The example was chosen to allow the reader
to compare and contrast the continuous nlodcl with the discrete model used for the
SAFER example, both of which derive from the domain of spacecraft attitude control.
In both cases the goals are the same: rigorous description and prediction of behavior.
~~~hat  differs  are the ~haractf~r of t~lc  underlying nlathelnatics  and the techniques used

for calculation.

A rigid body or spacecraft in a stable orbit may experience rotational motions that
require correction or nulling. A fixed or slowly rotating attitude, pointing the spacecraft
at a specific target or in a specific directiou, is typically desired. Solving this problem
requires a model of rigid body  dynamics and, once a cent rol strategy is adopted, a model
of the expected behavior under the desired cent rol regime. The mathematical basis for
such models is invariably that of differential equations, which offer a well-understood
theory to support calculation and ~)rediction.

Following 13ryson  [Rry94], the rotational motions of a rigid body in space can be
nlodclcd  as follows: let tlle angular velocity vector d be defined with respect to the
center of mass and principal body axes, making the products of inertia zero. Let 7, ~ k
be the unit vectors along the z:, y, z principal body  axes so that

I)enote by ~r, IY, 12 the monmnts of inertia, and by Q~, Qu, Q. the ~ody-a~is COl~IPO-
mmts of the external torque. The equations of motion describing the body rotations are
then given by

lr~ -..’(IY -- 12)qr = Q*

IYg - (12 – lr)71~  = Qy (4.2)
Iz; -- (lr -- Iv)pg = Q,

where  the time derivative of quantity v is denoted v. The resultant extel  nal torque @
includes any intentionally applied torques as well as disturbance torques from sources
such as gravitational or magnetic fields.

Consider the problem of achieving attitude hold, that is, applying a time-varying
torque to hold a rigid body’s rotation at zero or near-zero levels with respect to inertial
space. Assume first that any disturbance torques present are small compared to the
applied torques and hence may be ignored. This situation exists for “fast attitude
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control” based on the usc of thrusters. Assume
rigid body  are sufficiently symmetric about, the
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further that the mass ~Jropertics of the
axes so that the axes Inay be regarded

as decoupled and control can bc achieved for each axis i~ldcpendently.  Finally, assume
that appropriate sensors are available tc) sense both attitude and attitude rate for the
axes of intemt.  FoI’ purposes of this discussion, consider a single axis o~dy, the principal
y-axis, whose attitude deviation is denoted by O and attitude rate by 0, where  ~ equals
q from equations (4.1) and (4.2).

If the thrusters are proportional, that is, they can be throttled to provide variable
amounts of thrust, then attitude control can be achieved using a simple linear control
law. The applied torque is derived by feeding back a linear combinat  ic~n of attitude
deviation and attitude ratf!:

Ivti = Qy = --D8 - K(I (4.3)

hJotion will be stabilized as long as D > () a~ld K >0.

Proportional gas jets for attitude control are impractical, however, and the more
typical method is to use thrusters whose valves are either  completely open or completely
closed. This leads to what is often termed “bang-bang’ ) control. In pure  bang-bang
control, thrust is switched between one thruster and its opposing jet, exactly one of
which is on at all times. Thus, the control torque  has only two values. Q1 and –Q7.

Attitude deviation can be reduced through rlolilincar  control to nearly zero by ap
plying the torque

Q = - Q~ Sg11(6 +- @ (4.4)

where

{

1  ifz->0
Sgn(z)  ==

-1 otherwise
(4.5)

and I- is a const,ant making O + TO a linear switching function, thereby defining a line in
the 0-0 phase ~dane across m’hicll thrust reversal occurs. Using this control logic results
in the following relationship bctwcxm Q and the attitude quantities:

2Q

(

I .2
(%3- e--eo+  moo

)
(4.6)

The model predicts a convergence process that drives both O and ~ toward zero, where
they will eventually enter a limit cycle surrounding O = ~ = O.

A further refinement in a practical design would add a “dead zone’)  around the
desirccl attitude where no thruster firing occurs. Such a scheme is used in the SAFER
system described in Appendix C. Hysteresis is typically also incorporated, resulting in
control laws with additional nonlinearities.  In such cases, the modcd shown  for pure
bang-bang control is embellished to capture the more elaborate limit cycle behavior.

The focus now shifts from continuous clomain  Inodeling  techniques to those of dis-
crete CIO1llain  modeling.
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4.3 Discrete Domain Nlode]ing

~’llis discussion of discrete domain models is intended to be representative rather t hall
exhaustive. To that, end. the discussion is framed in terms of fc)ur broad classes of dis-
crete domain models: functional, at)stract  state Inachincj  automata-based, and objcct-
oriented. Of course, there  arc variants and shadings both  within and between these
classes, so that the four categories represent a descril~t ively useful. but so]uewhat  art i-
ficial classification.

As the application of techniques from logic alld discrete mathematics to proble~us  of
interest in computer (hardware and software) systems, formal methods inherently con-
cern computation. El-y  the same token, one of the ways ill which formal methods usually
differ from traditional uses of logic and discrete mathematics is that, they incorporate a
model of computat ion. The model of computation may be built in, that is, implicit, as it
is ill Hoare logic [Hoa69] and its variants, such as VDh!l  [Jon90]  and Z [Spi88,  Wor92]-
meaning that,  there is a built-in notion of program State, and a set of constructs for
composing operations that affect the state. Or it may be constructed on top of an
“ordinary>’ logic as Hoarc logic may bc defined within nigher-order logic [Gor89].  The
advantage of the built-in approacl~ is obvious when the built-in model is appropriate
to the task at hand. The advantage of the “constructed” approach is that it is possi-
ble to tailor the model to suit the circumstances of a given application. For example,
adding concurrency to a sequential Hoare logic is not cas}’– it generally cannot be done
within the logic, but, requires metalogical adjustments- whereas various models of par-
allel computation can be encoded in higher-order logic.

One of the key decisions in developing models for formal methods applications is the
relevance, if any, of the underlying model of computation, that is, the extent to w}lich
the u!lderlying computational paradigm should be explicitly modeled. It is useful to
keep this i]] nlillcl  during the discussion of discrete-domain models.

4 . 3 . 1  F u n c t i o n a l  Modelss

A functional model is OI(C that employs the mathematical notion of fullction in a pure
form, oftm in conjunction with an implicit and very simple computational model. A
surprisingly wide variety of algorithms can be adequately described as recursive func-
tions, assuming the most clenwntary model of computation, namely, the operation of
function composition. For example, one of the crucial insights in the specification and
analysis of the Byzantine Agreement protocols [Rus92]  was the observation that a sinl-
ple funct ional model of computation is sufficient, that is, it is not necessary to explicitly
model the (inherently complex) distributed computational environments in which these

—.—————
5Models for synchronous hardware circuits arc used to illustrate many of the ideas in this section.

Alt houg,h  these hardware models suggest lower-level, more architectural issues than those discussed
elsewhere in this guidebook, the simple hardware models provide more concise, transparent examples of
the modeling techniques in question than are typically a~ailabk with  requiren~ents-level  specifications
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protocols normally execute. 6 For a more concrete example, consider a functional model
for a simple synchronous hardware circuit, such as a binary (full) adder  that takes three
one-bit inputs x, y, and c.i (carry-in) and ~moduces sum and carry-out bits s and c-o,
respectively. In the functional model, a block with several outputs is modeled by several
functions, one for each output,7 and “wiring” is lnodeled  by functional composition. Us-
ing this functional modc!l, the binary adder would bc then be specified by two functions,
one each for s atld c-o:

r —.-— —.
S (X , y, c.i) = (x + y + c_i) rem 2
c_o(x, y, c_i) = (x + y + c_i)  div 2 .1

The relational model, first popularized by Mike Cordon  for hardware verifica-
tion [Gor86],  is a varialt  of the functional model that exploits the more general notion
of mathematical relation. In tlw relational model, a functional block is represented @
a single relatio]l  on the input, ancl output ‘(wires” that specifies the overall input-output
relation. For example. using the relational model, the adder might be specified by the
following relation:

[

———. — ——
adder (x, y, c _ i ,  s ,  c _ o )  =

(s = (x + y + c_i) rem  2 AND c_o = (x + y + c.i) div 2)s—— .---1

In the relational model, composition is accomplished by identifying “wires” with vari-
ables, conjoining the relations representing the individual blocks. and using existential
quantification “to hide” the internal wires.

For example, the i~l[~~lel~~exltatiol~  of a full adder  ill {erms of half adders aIIcf a 11and9
gate can be accomplished by the circuit shown in Figure 4.1. A half adder takes two
itl~)uts  a and b, and produces sum (s) and (complemented) carry (c) bits satisfying

L-—- . . . ..p. ––-–half. adder (a, b, s, c): bool = (2 * (l-c) + s = a + b) -1

while a nand gate produces an output (o) that is O if the sum of its inputs is two, and
1 otherwise:

6John Rushby provided this observation, which he credits, in turn, to Bill Young [E) J’90].
‘In a language such as PITS, that has tuple-t~pcs,  a single function that produces a tuple,  that is,

lmndle,  of values could be used.
6A more “requirements” oriented version  would be adder (x, y, c.i, s, c_o) = (2 * c_o + s =

x + y + c_i) (witl~ type constraints restricting all variables to the values  O and 1).
g A’and is also known as the Shc~er  stroke and symbolized as “1”. .4s the name suggests, nand is

defined as the negation of the and  (A) operation. Using IJe J’lorgan’s  la}vs, the A and V (or) operations,
and Boolean variables T and y. naud is defined

The nand and nor (7Lot or) operations played an iInportant role in logical design because each is ~unc-
tuma~ly cornpkk, that is, every switching function can k)f? expressed entirely  in terms of either of these
t~vo operations.
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~. .-. –– -1

Figure 4.1: lrtl~~ler~lcrltatio~l of a Full Adder.

Lnand(x, y: o): bool = (o = IF x + y = 2 THEN O ELSE 1 ENDIF) ‘--]

The ‘bwiril~gdiagranl” of Figure 4.1 is then spccificd  by the formula

[-----

_—— ——-—.  . .—. -——— . .. ———. ——.. -—-—
EXISTS p, q, r :
half_adder(x,  y, p, q) AND half_adder(p,  c_i, s, r) AND nand(r,  q, c_o)—. -.. ————.—. .— . ..1

Tlleadvalltage  of tllefl~tlctiollal  approacl)  is that it can lead to very simple andef-
fect ivc t hcorem  proving- basicallyjust  term rewritil~g,allclcatl be ’’executed” to yielda
‘(rapid prototype.” Theadvantages  ofthe relational approach are that it directly corre-
spondsto  wirillgdiagranls  (variables correspond exactly to wires, relations to functional
blocks), and that it cat) co~)e with feedback loops. It isoften  possible tc)conlbillethc
methods, as it) the first of tllc relational “adder” examples above, where the conjuncts  to
the relation correspond directly to the functions of the functional model. The combined
approach may additiollall.v  involve an explicit representation of state.

4 .3 .2  Abstract  State  hflachine  M o d e l s

A state machine model typically consistsof  an abstract represcntatio  no fsystcm state
and a set of operations that Illanilmlate  the state to effect a transition from the current
to the next state. I:igurc 4.2 illustrates a basic abstract state machine model. The
state machine trallsitiorl  function is a mathematically well-defined function that takes
input  values and current-statevalues, and mapsthem  into output andnext-state  values.
Representin  gc!ac~lo ft~vX’va luesasavcctor, this futlction,  A4, carlbecharacterizcdas
follows, wllercl  atlclC)a rc:il~~)~ltsa lldout~>llts,r  es~~ectively,a  lldSisa  setc)fstates. Note
that this fcmmalization  does not explicitly represent, the distitlction between  current- and
next-state values.

M:lxs-->[oxs]

AI can be used to capture the functionality of a givell  system, as well as to for-
malize abstract properties about system behavior. For example, if sequences I(n) =
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Figure 4.2: Abstract State h4achinc N40del.

< i] ,.. .,z7L>and O(n)=  =<01, . . . . 07L > denote the flow of inputs and outputs that,
would occur if the state machine were run for n transitions, then a property about the
behavior of M could be expressed as a relation 1’ between l(n) and 0(7t).  Ultimately,
it WOUICI  be possible to formally establish that the property P does indeed follow from
tllc formal specification Af.

The A-7 methodology [H+ 78, IIen80, vS90, Par91, Ph491]  developed for describing
the requirements for control systems illustrates how the state machine model can be
specialized to accommodate a particular type of application. In this case, the basic idea
is that a control system can be modeled as a control function  plus a state. The system
evolves in tinle:  at each iteration or jranle it reads the values of ccrtaixl monitored vuri-
ables, that is, it samples scmsors, consults tl~e current values of its state variables, and
computes a function that yields a pair of results: new values for the state variables and
output values fix the control  variabks.  The dataflow  diagram in Figure 4.3 illustrates
the basic A-7 mode] for a system with one monitored variable x m, one cent rol variable
y-c, and a single state variable z, which is denoted z-s and z_f  according to ~rhether
it is being read from, or written to, the local state. The purpose of a requirements
specification in this context is to specify the box labeled “control.’)

10 specify this model of computation explicitly, the variables x-m and so on would
be modeled as traces: functions from time (that is, frame number) to the type of the
value concerned. For exanq)le,  x m(t) is the value of monitored variable x-m at time
(frame number) t. It is then possible to specify how the outputs are computed and
how the renaming of .f variables to .s variables occurs by means of the set of recursive
equations:

[

‘y_c(t) = f (x_m(t) , z_s(t))
z.f(t) =  g(x_m(t),  z_s(t))
z_s(t) = z_ f(t-1) — “ - I

where f is a function that specifies the computation for the control output aud g is a
fuuctic)n  that specifies how the local state value is updated (see Figure  4.4). III general,
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Figure 4.3: A-7 Model of a Silnple C;ontrol  System.

there will be many nlonitored, controlled, and state values, aud those  values thenlselves
can bc vectors of values or arbitrary data ty~)es.

On the other hand, if there is noneed to reason about the evolution of the system
over time: a far simpler representation that uses pure functions on simple values rather
than traces lllaysLlfice  tos~)ecifyl~our  the “new” values of the various state and output
variables are derived in terms of the monitored and “old” values. The conceptual model
used to formalize the Jet Select function of the Space Shuttle flight software [NASA93]
~Jro~’ides an example of this approach. Jet-Select  is a 10W-1CWWI Orbit DAI’ control
function that is responsitic  for selecting which Reaction Control System jets to fire to
achieve translational or rotational acceleration in a direction determined by higher-level
cent rol calculations or crew input. In the pilot study cited, the behavior of a component.
such as t,hc rotation compensation module, would be represented by a function that
models the external interface to the function. hTote  the explicit, representation of prior-
a~ld next-state values in the signature of the function, ~.

~: external inputs x prior state inputs --> [external outputs, next state outputs]

4 . 3 . 3  A u t o m a t a - B a s e d  M o d e l s

An automaton is a finite-state transition system consisting of a set of states and a set
of state-to-state transitiolls  that occur on input symbols chosen from a given alphabet.

4 .3 .3 .1  * -Automata

Automata may be deterministic, nleaning  that there is a unique transition from a given
state on a given input, or non deterministic, me,aning t hat there are zero, one, or more
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Figure  4.4: State-UIJdate  and Actuatc)r FLltlctio!lsv~it~li~l  Control System

SUC1) transitions. Formally, a detcmninistic  finite automaton is defined as a 5-tu~Jlc
(S, X,6, S0,F), where Sisa finite  set of states, Xisa finiteinput  alpha~ctj  so is the
i~litial state, F Q S is the set of final states, and 6, the tratlsition  function, maps S x X
to S. A nondeterministic finite autonlaton  is similarly defined as a 5-tuple, the only
difference  lleing  that 6 is a map from S XX to the powcrsct  of S, written P(S). In
other words, 6(s, a) is the set of all states St such that there is a transition labeled a
from s to s’. A thorough introduction to finite automata may be found in [Per90].

Conventional or *-autonlata  accept only finite words and can express state invariant,
that is, safet<y properties or properties “at a state”, but not eventualities or fairness
constraints [Kur94, p. 13].10

——
1°Fairness  constraints specify, for exaruple,  that certain actions or inactions do not persist indefinitely

or that “certain sequential combinations of actious  are disallowed” [Kur94, p. 57]. Anticipating the
discussion in section 6.2.1.1, a fairness property can be defined as an LTL property (p) of the type
GF(p). This definition uses CTL* syntax; the definition could also be written Usi[lg I,TL operators.



q’o accommodate eventualities, it is necessary to use a class of automata that accepts
infinite words (sequences), the so-called w-automata. Like a conventional automaton,
au w-automaton consists of a set of states, au i~lput alphabetj a transitio~l relation, a~ld
a dis~inguished  initial state. ‘1’he difference between the two classes of automata occurs
in t]le definition of acceptance. Acce~Jtance for a conventional automaton is defined in
terms of a final state. Since the notion of final state is not useful for a class of machines
that accepts infinite words, acceptance must be defined in some othcx way. lrarious
accept auce conditions have been given for w-aut onlat  a [CBK90, p. 104], two of which
are given below. ‘1’he definitions that,  follow are based on a discussion in [CBK90].
A (uondetermiuistic)  w-automatoll is a 5-tuplc (S, 2,6, so, Y_), where S, Z, and so are
as defined above,  .7 is an acceptance condition, and 6: S x Z ~ P(S) is a transitioll
relation. The automaton is deterministic if for every state s E S and every a c X,
16(s, u) <11.  A comprehensive survey of u-automata appears iu [’Tho90).

The following definitions, agaiu taken from [CBK90], arc necessary for defini-
ng particular instances of %. A path in au w-automaton, M, is all infinite se-
quence of states so s] S 2 . . . E S that begins ill so and has the following property:
Vi ~ I,Sai ● X: J(si, ai) ~ Si+l. A path so SI S2. . . E sd in M is a run of au inf-
inite  word a1a2. . . E V“ i f V i  z l:d(sz, az) 3 Sz+.l. The i~~finitury  set of a sequence
SO S] S2 . . . 6 SJ, written 2n~(sosI  . . .), is the set of all states that appear infinitely
many times in the sequence.

4X
A Buchi automaton flf is au u-automaton where the acceptance condition, >, is

defined as follows. F C S is a set of states (as in the case of a *-automaton) and a path
p is accepted by M if i?tf(p) n F # O. T’he acceptance condition of a Mul]er  automaton
is a set F Q P(S) of sets of states. A path is accepted by a Muller  automaton if
i?~j(p) E 1’. other w-automata that,  appear in tllc literature are Rabin, Strectt, I,, and
V– automaton. Although acceptance conditions for these automata are not defined here,
it is worth noting that “an infinite word is accepted by a Buchi, Muller,  Rabin, Streett,
or I, automatol] if it has an acceptiug run in the automaton. AI] infinite word is accepted
by a V-automaton if all its possible runs in the automaton are accepted.” [CBK90, p. 106]

4.3.3.3 T i m e d  A u t o m a t a

Timed automata arc a generalization of w-automata and are used to model real-time
systems over time. Like w-automata, timed automata generate (accept) infinite se-
quences of states. However, timed automata must, also satisfy timing requirements and
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~)roduce  (accept) timed  state  sequences. ‘1’imecl  automata nlay be given various se-
nlantic  inter~)retations,  illcllldillg~~oil~t-based strictly -nlonotonic  real-tinw  (the original
interpretation), ilkcrval-based variants, interleaving fictitious clock, alldfor  sylichronic-
ity [AH91].  An excellent discussionof  thcthcor.y  of timed automata and its application
to automatic verificatioll  ofrcal-til[~er  eq~lirclllclltso  ffi~~ite-state  systen~s  nlay be found
ill [AL)91].

4.3.3.4 H y b r i d  A u t o m a t a

Hybrid automata extelld  finite autonlata with continuous activities and are used to
n~odel  systen~s  that incorporate both continuous and digital conlponents. Hybrid au-
tomata may be viewed as “a generalization of tinmd automata in which the behavior of
variables is governed in each state by a set of differential equations.’; [A~HH93]  There
are various classes of hybrid autonlata, i[lcludin,g  linear hybrid autonlata and hybrid
in~)utjoutput auton~ata.  l,inear hybrid automata require the rate of change with time
to be constant for all variables (although the constant nlay vary from location to loca-
tion) and the ternls used in invariants, guards, and assignments to bc linear. 11 Alur et
al. [A~HH93]  provides a good introduction to hybr-id  autonlata and [AH95]  describes
a synlbolic n~odel checker for linear IIybrid systm~ls. Hybrid input/output autolnata
(HIOA) focus on the exterllal  interface of a nmdeled  hybrid syste~rl  through distinctions
in the state variables - which are partitioned into input, output, slid internal variables

and the transitiol[  labels - which are similarly ~)art it ioned into input. output,. and
internal actions. Lynch [LS\~W96]  gives a useful introduction to H1OAS and [AHS96]
contains several papers, jncludillg [l,y~lg~],  describing tllc usc of H1OAS  to l~lodel  and

analyze automated transit systen~s.

4.3 .4  O b j e c t - O r i e n t e d  M o d e l s

Object-oriented models represent systems as structured collections of classes and ob-
jects with explicit notions of encapsulation, inherit ante, and relations bet wee]) ob-
jects. Several informal object-oriented analysis and design methodologies are cur-
rently popular, including Booth [Bo09 1], Coad and Yourdon [CY91  a, CY91 b], Rum-
baugh [RBP+ 91, RB91], Shlaer and Mellor [SM91],  Goldberg [Sys92,  RG92] and most
recently, Unified Modeling Language (UML) [Rat97]. These methodologies offer a useful
and easily assimilated approach for structuring an application based Oli multiple dia-
grammatic vie~w of the underlying system. UML, which represents a unification of the
1300ch, R.umbaugh, and Jacobson methods, employs static structure, use case, sequence,

1‘ A tin~ed autoxnaton  is a special case of linear hybrid  autonlaton iu which each continuously chang-
ing variable is all accurate clock Ivhose rate of change  with tinle is 1. In a timed automaton, all
terlfLs involved in assignnwnts  arc constants and all invariant and guards compare clock values ~vith
constants [.ACHI193].
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collaboration, state, activity, and implementation diagrams. Rumbaugh’s  Object h!lod-
c]ing Technique (OM’T) [RBI)7 91] nlethod, which  is used ill the following exatnple,
employs three  separate modeling techniques: clltity-relationship)-type diagrams, state
machines or Statecharts  [Har87, HiY96],  and data flo~v diagranls,  yielding a colnposite
model whose conl~)onents  are typically linked rat,her than itltegrated  or unified.

The following fragment of a design-level OMT representation of a generic fault pro-
tection monitor based on a study of the Cassini spacecraft [LA94, AL95] illustrates the
use of object-oriented teclmiques  for modeling spacecraft systems. The OMT  represem
tation is generic ill that it attempts to explicitly document the functionality and at-
tributes shared by all the Cassini fault protection monitors. In the context of spacecraft
systems, the term “monitor” refers to software that periodically checks for system-level
malfunctions and invokes recovery software as appropriate. There are eighteml moni- .
tors in the system-level fault protection onboard the Cassini  spacecraft, includitlg eight
“over tmnl)erature” monitors. ‘Me other ten monitors detect loss of commendability
(uplink), loss of telenletry  (downlink), heartbeat loss (that is, loss of ccunmunicat  ion
between computers), overpressure,  undervoltagc, and other selected failures.

The OMT approach provides three view~)oints:  the object model, the functional
model, and the dynamic model. Figures 4.5, 4.6, and 4.7 illustrate these  three models
for the Cassini  fault monitor at the desig[~  level.

Figure 4.5 reproduces the object  model, a static representation of the system that
reflects four attributes and three operations that defillc the monitor class (activate,
enable  output, and disable output). The class is further decomposed into three object
classes: sensor data, valid data, and fault indicators. The attributes and operations for
these three  classes define  the interfaces between the monitor class and the rest of the
systenl.

Figure 4.6 reproduces the functional nlodcl, which represents the computation that
occurs within a system and is presented as a series of data flow diagran~s. The top-
level diagran~ documents the interfaces between the fault protection nlanagcr  and the
monitor. The mallager  activates the nlonitor and processes the monitor’s  request for
a fault response. Tile n~onitor receives data from the hardware sensors ( “measured
state”  ), from the “comnanded  state” that is stored in nlemory, and from the u~)dates
to the state made by previous executions of the monitor itself, and uses the infornlation
to determine an appropriate fault response.

Figure 4.7 reproduces the dynamic model that specifies the flow of cent rol, int erac-
tions,  and sequencing of o~)erations. These dynanlic aspects are modeled in tern~s of
events and states using standard  state diagralns  (that is, graphical representations of
finite state nlachines).  The behavior of the Cassini  fault protection nlonitors is highly
sequential. The state tralLsition model provides a clear and intuitively straightforward
representation of the typical six-state sequence followed by an active monitor in the
presence of a fault that requires a recovery response.

While tile ty~)es of informal object-oriented models illustrated here have considerable
utility, their usefulness in the context of fornlal methods is limited because they do not
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Figure 4.5: Object  h40clel of Cassini Gemric  Fault,  Protection N4cmitor.

have all underlying nlathematical  basis and therefore lack a precise sen~antics and the
abi l i ty  to  suppor t  fornial reasoning.  More  .gj.meral  caveats expressed in regard to sonic

or all of these informal object-oriented methods include the following [Jac95,  p. 137]: (1)
objects belong to fixed classes- -the rigidity of these class structures precludes transition
or metamorphosis of objects: (2) objects typically inherit properties and behavior from a
single class at tile next hierarchical level; this notion of single inheritance precludes many
naturally occurring inheritance patterns involving shared and multiple ild~eritance;  (3)
objects are inherently reactive and typically cannot initiate activity of any kincl. Al-
t bough these three caveats are now addressed in many object-oriented programming
languages, for example, through multiple inheritance, dynamic object classification, and
concurrency, the popular methodologies that support the earlier stages of development
do not, typically address these issues. A fourth caveat is that the lack of integration in
conllJosite  models often makes it difhcult  to reason effectively about system behavior.
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Historically, object-oriented ideas evolved from the notions of classes and objects
in Simula 67. In the following quote, Ole-Johall DaIll discusses this evolution in tile
context of formal techniques.

‘(object orientation, as it appears in Simula 67, was motivated by twro
mai~l  concerns: To achieve good structural correspondence between discrete
event simulation progratns  and the systems being modelled. And to provide
language mechanisms for the comtruction  of reusable program components
wrhile maintaining good computer efficiency.. . . Object orientation has proved
to be a successful structuring strategy also outside the area of simulation.
This is due to the fact that objects are useful general purpose tc)ols for
concept  modellirtg, and can lead to better program decomposition in ~;cneral,
as well as new kinds of reusable program components. It is worth Iloticing
that the class concept of Sinmla 67 is used to represent “modules” atld
“packages” as well as object classes.” [I)al190]

Object-oriented ideas share this ancestry with algebraic spccificatioll;  tile classes
of objects and “prefixing” central to Sitnula 67 ultimately led to object-oriented pro-
graming languages and to t lle theory of algebraic specifications [Bre9 I ]. Algebraic
specifications treat data structures and program development concepts, suclL as refine-
ment, in an axiomatic logical style and use high-level descriptions of data types known



ATA SA. G~_OOl  .97

“---9

-k9---_ +----+

,,,,..*@$?,@z,ePasses

43

Figure  4.7: Dynamic Model of Cassini Generic Fault Protection h40nitor.

as abstmct data types. Abstract data types am manipulated by similarly high-level
operations that are specified in terms of properties, thereby avoiding i[~l~~lell~elltatioll-
dependent data rcpresentatiorls. As Abadi and Cardelli  note in their book on the
(formal) foundations of object-oriented programming languages [AC96, I). 8], “. . . data
abstraction alone is sometimes taken as the essence of object orientation. ” This his-
torical connection is of interest because the frameworks of algebraic specification and
of object-oriented programming languages nave each contributed to ongoing attempts
to providea mathematical basis for the concepts underlying object-oriented  models.1~
This research has taken many dircxticms, iucludillg those summarized below. In keeping
with tllc focus of this guidebook, tile examIJcs  iucludcd  itl this discussioll suggest tile
~,ariety of t~le ~~ork  in t~~is area, but arc @ I1O means exhaustive.

One approach is to take a mc)del generated by one of the informal object-orimlted
methodologies and formalize it using a novel or existing formal description technique.
For example, Moreira and Clark [MC94]  describe a technique for producing a formal
object-oriented analysis model that integrates the static, dynamic, and functional prop-
erties of an ot)ject-oriented model created using one of the informal object-oriented
methodologies. 13 The formal model uses LOTOS (Language of Temporal Ordering
Specification) [1 S088], which has a precise mathematical semantics and represents the

14 An object is represented assystem as a set of coxnrnunicating  COIICUtTC!Ilt  objects.
the instantiation of a LOTOS process, and communication among objects takes the
——— .

12 SW) for example, recent  proceedings fron) conferences such as ECOOP (Eurc~pean  Conference on
Object-Oriented Programming [TP94, 01t95] ) and 00PSLA (Object-Oriented Programming Systems,
Languages, and Applications) [ACM94].

‘3 [hlC94]  actually describe a Rigorous Object-Oriented Analysis (ROO.A)  method that combines
object-oriented analysis and formal description techniques. This discussion focuses only on their mod-
eli ng approach.

14That is a set of colll~)U1liCatjng  processes.  T}IC a~proach  is based on I)rocess  algebra, dra~~ing on>.
elements from CXS [Mi189]  and from (HSP [Hoa85].
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forln of message passin~, which is modeled by ot)jccts syllc}lronizing  011 an event during
which information may be exchanged. In this a~)proach, the dynamic aspects of a class
temlJlate  ate modeled as a 1,()’1’0S I)rocess  am] tl~c static I)roperties  as abstract data
types

Another approach is to take nc)tatioll  fronl one of the informal methodologies and
formalize it, thereby lmovidillg  a formal semaut ics for tllc informal  notation. For ex-
ample,  I{ayes and Coleman [HC91] use 0bjcxtcharts15 [CHB92]  and a derivative of
~~Dhfl  [Jou90] to provide a coherent set of formal models corres~)onditlg  to the mod-
els generated by a subset of Oh!IT. Briefly, Hayes aud Coleman introduce an object
stmctum  model, linking the formal representations of the informal OMT  models (ot)-
ject,  dynamic and functional) to provide traceability and consistency checking. llle
infornial  OM’T functional model is replaced by VDM-styIc pre-post  condition specifica-
tions over the object structure model, the informal dynamic model is formalized using
Objcctcharts,  and the object model uses the formalized entity-relationship notat ion de-
scribed ill [FNT86].  q’here  has also ken work integrating formal and object-orientccl
methods using VDh4-t  + and OMT [I, G96]. VDM+  + is an obj[!ct-oriented extension of
VDM  designed to support parallel aud real-tinlc  specification.

O~lgoing  work at the hlichigau State Ullivcrsity  Software 13ngiueeriug Research
Group [BC94, Cl WBf14]  is yet another variant on this a~)proach. Their prototype system
uses algebraic specifications to fornlalizc a subset of the OMT object-nlodeling  nota-
tion ap~mo~)riate  for nlodeling requirements. Again, tllc fornlalization  is based 011 tllc
straightforward mapping between object-oriented software concepts and abstract data
types.1~

The COIW n~ethod  [FFIWK92]  for spccifyilLg  real-time rcquirenlents  provides a fur-
ther example of the coherent integration of object-orieuted  and fornlal  rnodcls.  CORE
is au an~alganl  of the CAS12 Real-Tiuw hlcthc)ci (which is itself an an~algam of Rcal-
Tin~e Structured Analysis [WM85] and object-oriented concepts) and the four-variat)lc
xuodel  [vS90,  vSPM 93] developed by F’arnas and his colleagues. CORE  interprets the
three  basic structural elel~lents  of the CASII  Real-Tinle method: infornlation, process,
and l)chavior pattern, in terlns of object-oriented concepts. Processes correspond to
object  classes aud interprocess connections to interactions between objects. The state
machines used to encode the behavior-patterll view are partitioned to correspond to the
states of all object  class. ‘The fornlal  model underlying object  definition and deconlpo-
sitiou  is based on the standard nlathcnnatical mode] of embedded-systen~  behavior used
by the four-variable nlcthod. 1’lIc resulting anlalgaul retains the graphical notation
and not ions of abstraction, encapsulation, separat  ion of col]cerns,  and nonalgorithulic

15 AU Objectchart  is an extended forn~ of Statechart  [Har87, HN9G] used to specify object classes.
16 The  graphical environment prototype generates Larch specifications [CW’B94].  .41though current

vcrsiol,s  of Larch are not inherently algebraic, the illl~)leItlclltatioll  cited supports only algebraic lan-
guages although it is general euough  to accon~nlodate  most algebraic languages that have a well-defined
gramtnar. It appears that ‘object model” has replaced the previously used phrase uf,rdysis ob~ect
sche71uhr (a-sche7nata)  in receILt publications [BC95b].



s~)ccification  associated with object-oricrltcxl a~)proaches, within a nlatl)enlatical]y well-
defincd model contributed by the four-variable nlctllod.

There have also bcc]l  formalization in Z c)f the three OhlT  notations [Spi88, Wor92],
as well as object-oriented extensions to Z. The collection of papers in [S13C92] contains
accounts of both approaches, including a summary of Hall’s object-oriented Z specifica-
tion style,  whic]l is also ctescribcd  in Hall [11a190].

4.4 A Model  for the SAFER. Avionics Controller

The SAFER  avionics cent roller described in Section 2.6 exhibits several characteristics
that,  strol@y influence the choice of a model for its formalization. The basic function-
ality of the cent rollm requires a represent at ion that captures the mapping from input
and scwsor values to outputs. The model must, also be able to capture the dependency
of current everks  on prior events, necessitating the use of a state- or trace-based model,
or other re~mesentatioll  lvith similar facility for preserving values from one “cycle”  to
another. The fact that tllc coutrollcr maintaitls  and updates its own interns] status,
including Hand Colltrollcr h40dule  (IICM) display and Automatic Attitude Hold (AAH)
status, provides additional nlotivatioll  for an explicit representation of state. In fact,
tllc SAFER avionics controller provides a nice illustration of a system that can be quite
naturally modeled as a state machine  (see Section 4.3.2), that is, as a model consisting
of a system state and a transition function that maps inputs and current-state val-
ues into out~)uts  a~~d next-state values. Arguably, a variant of the basic state machine
Inodcl, suc}l as t lw A-7 [11+ 78,11 e~180,  vS90, Par91 ,PM91]. which is specialized for control
systems, would provide a representation that differentiates inputs, outputs, and state
values by cx~)licitly idcntif.ying monitored, control, and state  variables (see Figure 4.3).
Although t llc diflcrellces  between  these two models are small, the choice bctweell a
basic state machine model and a s~)ecialized state machine mode] illustrates the ty~w
of trade-off that typically enters into modeling decisions. In this cas[!,  the trade-off is
tile relative sin]l)licity  of tile basic state machine model versus the additional expres-
siveness of the s[)ecializcd  A-7 model, where finer-grained  distinctions alnong variables
potent ially ~)rc)vide  a clearer mapping between informal description, requirements, and
the formal sl)ecificat  ion. on the other hand, the level of description and the (primarily)
pedagogical role oft he SAFER  example motivate the use of the si@er model presented
here. Nevertheless. tllc rc!ader is encouraged to consider the similarities between the ba-
sic stat[!  n~acllillc model developed here and A-7-type models, in particular the notion
of tile state trazlsit  ion fu]lct ion defined as a control function with monitored (that, is,
sensor) and stat e variat )lCS as input and cent rol and state variables as output.

A final consideration concerns the representation of time. Since the basic fu~lction-
ality of the ccmtrollm can be captured within a single frame or cycle, there is no need
to reason about the bcllavior or evolution of the system over time or to introduce the
additional com~)lexity  required for an explicit representation of time. The trade-off here
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is the simplicity of the model versus a loss of analytical I)ower. Without an cxlJlicit
representation of time, there is no way to explore certain types  of propmties,  including
safety and liveness  properties that establish (roughly) that nothing bad ever ha~)~)ens
and something good eventually happens, respectively. For example, without an exl)licit
representation of time; it would be in~l)ossiblc  to denlonstrate that an HChf translatic)ll
(rotation) comnland eventually results in thruster selection. ‘7 Although the nlodels
presented in this chapter do not incor~)orate  a notion of time, a tinw 01 trace-based
model could be added, as needed, on top of the state-based n~odel  presented hem.

Having identified the underlying mode] as a basic state machine, the next step  is
to define  the control (transition) function. The transition function for the top-level
controller model is comprised of functions re~mesenting its constituent nlodulcs and
assenlblies.  Of interest here are the AAH and thruster selection functions. Thruster
selection maps HCM and AAI1  commands iljto a~] integrated
command that, determines the corresponding (thruster) actuator
phase functionality can be modeled simjlly as the colnI)ositioll
rougl]ly

sclec:tcd..ac:t tluiors o i?~tc:g?atcd-c:oT?t?rluTld

six degrcw-of-freedoni
Conmands. T1lis tWTo.
of the two flmctiolls,

The AAH model cannot be so simply discharged, because the automatic attitude
lloldcal)abilit~' l[~ail~taitls il~terl~als  tateil~forll~ati  ol~toit~~l~lcltlcrltt  lleA  All control law
and tc~ track whether the AAII is engaged or disengaged and which, if any, of the three
rotational axes arc under AAH control. AAH control law is implemented in terms of a
complex feedback loop that monitors inertial reference unit (IRU) angular rate sensors
and temperature sensors (one for each of the three rate sensors), and generates rotation
comn~ands.  Although this account is necessarily simplified, it suggests a fairly complex
control system with clearly differentiated variable types  and a well-defined internal state.
The rationale for considering an A-7-type interpretation of a basic state machine model
for the top-level avionics controller applies equally to the A AH. The A AH state machine
model is slIown in Figure  4.8.

A closer look at the AAH button transition function further illustrates the type
c)f issues that invariably  arise in developing models for formal  specification. The state
transition diagranl for this function show’n in Figure 4.9 represents the single-click,
double-click engagement protocol described in Section 2.6, where nodes represent AA1l
states and arcs represent the two button positions (up or down) and the twc) operative
constraints (timeout or all three rotational axes removed from A AH control). 18

For example,  if the AAH is engaged and the AAH pushbutton switch is depressed,
the A AH enters a state (“pressed once’]) that is exited only u’hell the ~)ushbut toll is

——. — ——
17\Vhether  the thruster selection is correct ~rith  res~wct  to the thruster select  logic is an important

property, but not a liveness  issue.
‘S1’he diagram actually represents a con~bination  of pushbutton and implied events. For example,

although the 3-axes-off transition reflects one or more previous HChI comnlands,  it does not represent
an explicit pushbutton event, such as AAH enatk/disable.
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down

up

(9 up

down

up

down

down

up

—

Figure 4.9: Labeled AAH Pushbutton State Transition Diagram.

explicitly inactivate the AAH. The AAH model presented here reflects the second option,
which is more straightforward and avoids the possibility of misleading a crewmember
into thinking that the AAH is engaged when in fact all three axes have been disabled.
There are also modeling issues, including those surrounding the representation of the 3-
axes-off transitions. In the model diagrarnmed  above, the 3-axes-off transition emanates
only from the “AAII  on” and “A AH closing” states, although logically, it can be argued
that 3-axes-off transitions should also emanate from the “pressed-once” and “pressed-
twice” states. In other words, the model should explicitly reflect that fact that if AAH
is engaged and all three axes have besn disabled, AAH  is terminated. ‘rhe  rationale
for the given model is that the behavior of the resulting system is cleaner if the “AAH
off” state is entered only after the pushbutton switch is released (“up”). Otherwise the
button would be depressed and cause an immediate transition to “AAH started” on the
next pass. Similarly, although it is arguably preferable to omit the 3-axes-off transition
from ‘LAAH closing” and allow the double click to complete, if the crewmember forgets
the second click, another ill-defined situation results.

So far, the discussion
its physical components.

l“laS  focused on modeling SAFER’s functionality rather than
Although many of SAFER’s physical features fall below the
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released, at which poiut  the A AH transitions to a state that, may be exited in onc of
two ways: either the 3-axes-off constraitlt  becomes satisfied and the AAH is disengaged
or the pushbutton is depressed for a second tiule aud the AAH enters a twilight state
( “~)ressed  twice” ) prior to button release aud disengagement. Several interesting ques-
tiorls arise with respect to this model, largel.v  because of uudocuuwnted  behaviors. For
examplej  the Oymations  Manual [SAF13R94a]  cloesn’t  mention the case represented hy
the t~vo 3-axes-off arcs, where the axis-by-axis disabling (resulting from explicit rotation
commauds issued while A AH ~vas engaged) effectively disengages the A AH. The two op-
t ions are either to leave A AH nomiually active with all three rotational axes off or to
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8

level of abstraction chosen for tile fcJrmalizatioll,  certain features such as the thrusters
lnust be modeled. SAFER  has 24 thrusters arranged  ill four groups (quadrants) of
six thrusters each. Consistent with the intermediate level of detail chosen to make the

I

guidebook example easier  to understand, the thrusters are modeled  hy wlulneratiug  each
of the 24 thrusters by name at~d providing a function that maps a thruster  name to a
full thruster designator. The thruster  designator is a triple consisting of elements that,

1

represent,  the direction of acceleration yielded by firing the thruster, its quadrant. and
its physical location as sho~vn in Figure C.3. For example, thruster F1 would be mapped
to the designator (FD, 1, RR) and thruster L3R would be mapped to the designator

B (L T, 3, RR). Possible values for the three designator

● I)irection: UIJ, down,  back, forward, left, right

t
● Quadrant: 1, 2, 3, 4

● IJocation: forward. rear

components are as follows:

It is instructive to consider a more abstract model of the SAFER thrusters. For example,
a considmably  higher-level model might simply provide primitive (uninterpreted) ele-
ments called thrusters, some of which accelerate up, others do~vll,  back, forward. right,
or left. These distinctions are disjoint, that is, a thruster accelerates in exactly one
direction and there are 110 otllcr kinds of accelerations. The exact number  of thrusters
and their physical posit ions wit h respect to quadrant and location are irrelevant at this
level of abstraction, although it would certainly be possible to s~wcify atl u~)per boutld
on the number of thrusters. The advantage of this highly abstract model is that it is
not obscured by (arguably irrelevailt)  detail a~ld it is ge]lcral enough to be applicaljle
to new designs or future modifications.
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Formal Specification

A for~nal  specification is a characterization of a planned or existing systeni expressed in
a formal language. The characterization typically consists of a collection of axioms and
definitions whose meaning and conseclueuces  are determined by the precise ~nathematical
basis of the formal language and its rules of inference. In this context, ‘(consequences”
denotes all the formulas that can be derived fronl  the axioms and definitions using for-
mal deduction (as prescribed by the inference rules). These  derivations are also referred
to as proofs, and the set of formulas constitutes the theory defined by the specification.
The act of formalizing a specification does not necessarily make it relevant, coherent,
or true. There are several ways to increase the certainty that a specification expresses
the intentions of its author and that what it says is true, including--in ascending order
of rigor- parsing, typechcckiug, animating, or exccutiug all or part of the specifica-
tion, well-f ornledness  checking for definitions 1, demonstrating consistency for axiomatic
specificat ions2, and developing and proving theorems entailed by the specification. Of
course, there is no way to completely guarantee that a formal specification is correct
or accurately represents reality; the various checks and tools cited here can reduce, but
never totally eliminate, the possibility of human error. Nevertheless, there are very real
benefits to be gained from formal specification, benefits that are not ditninished  by the
inl~)ossibility  of defluitive  correctness.

This chapter focuses exclusively on formal  specification, leaving issues of formal
analysis and proof to Clla~)tcr 6. The discussion covers specification languages and
styles, as well as the checks and tools meutioued  above with the exception of theorenl
proving, whicl),  as already noted, is deferred until Chapter 6. The discussion also touches
on the utility of forn~al  specification in the absence of forn~al  proof and continues the
ongoing exan~ple with a partial specification of SAF13R,  using the n~odel  developed at
the end of Chapter 4.
_——

1 ‘1’hat is, assuring conscrvat  ive extension; see Section 5.1.2.9 for a discussion of this and related
topics.

2For exanlple,  exhibiting a model;  see Section 6.1.1.

50
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5.1 Formal Specification Languages

A formal language consists of a collection of symt)ols drawn from an alphabet and a set
of syntactic rules that govern which combinations of symt )ols constitute valid expres-
sions in the language. In purest form, a formal language and the rules for manipulating
it are referred to as a (luathcmatical)  logic. The propositional and predicate calculi are
examples of this type of formal system. Although some formal specification languages
use pure logics,  many enrich the underlying logic with modern programming language
concepts and constructs such as type systems, encapsulation, and ~Jara~~~eterizatiox~,
thereby increasing thecxprcssiveness  of the formal language while retaining theprccise
semantics of the under].ying logic. As these remarks suggest, the distinction between
a specification language and a programming language is somewhat blurred. ‘1’he same
can bc said for their respective artifacts. Although a program call be viewed as a
specification, a slmcification  is typically not a program and often contains such nonconl-
putational constituents as high-level constructs and logical elements (e.g., quantifiers).
The basic difference is one of focus: a program specifies completely how something is to
be computed, whereas a specification expresses constraints on what is to be computed.
As a result, a specification may be partial or “incomplete” and still be meaningful, but
an incomplete program is generally not executable [Win90,  p. 8] [0 SR93a,  p. 2].

There is a wide variety of formal specification languages, far too ma])y to be con-
sidered here. Rather than focus 011 a reprcscmtativc  sample of these languages, the
discussion concentrates instead on general characteristics and features of specification
languages, the rationale being that discussio~l  of foundational issues. general features
of. and desiderata for formal s~jccificatioxl  languages will provide the reader  with back-
ground and access to a wide range of formal specification languages. Although nlecha-
nized support for forma 1 systems is not discussecl,  one of the additional benefits of a high
degree of formalization is that specifications written in a formal language are amenable
tc) mechanical analysis aud manipulation. Most formal specification languages arc sup-
ported by mechanized syntax analysis tools, and many also enjoy some level of nlecha-
nized semantic analysis, as well as deductive apparatus in the form of theorem provers
and proof checkers. A It bough most systems arc designed around a particular s~)ccifica-
tion language and its proof rules, there are also generic systems such as Isabelle  [Pau88]
that support a variety of logics  and notations. Volume I of this guidebook [NASA-95a]
includes an extensive list of formal methods tools, as well as a description of approxi-
mately 15 of the most widely usmi of these systems.

5 . 1 . 1  Founclations3

As noted earlier, a formal specification language is grouuded in a mathematical logic.
‘There are, of course, a wide variety of logics: simple propositional logics (either classical

3Thc ruaterial in this section is based  largely OX,  a discussion in [Rus93b].
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or intuitionistic),  equatiol Ial logics,  quantificatiollal  logics, model and temporal logics,
set theory, and higher-order logic, althoug}i  this by no means exhausts the possibilities.
‘TIWSC  and other logics  were developed by lllatlielllaticial~s  to ex~)lorc issues of ccnlcerll
to them. As Rushby [F{us93b, p.214] notes:

“Initially, those concerns were to provide a minimal and self-evident foun-
dation for mathematics; later, technical cluestions  about logic itself became
important. For these reasons, nlLIch  of mathematical logic is set up for
metamat  hemat ical Imrposes:  to show t hat cert ain elementary concepts al-
low SOIUC  parts of mathematics to be formalized in principle, atld to support
(relatively) simple proofs of prol)erties  such as soundness and completeness.”

On the other hand, formal specification languages are developed primarily to be used,
that is, to formalize requir emcnts,  designs, algorithms, and programs and to pro~’ide an
efficimlt  and effective basis for reasolli~lg about ttlesc artifacts and their  ~)roperties.
Predictably, the languages developed by mathematicians are not necessarily well-suited
to the needs of those engaged in formal specification and aualysis.  This is ~)articularly
true when mechanization of specification and analysis is considered.

Although there are specialized uses for some of the logics mentioned above - for ex-
ample,  a propositional or modal logic can provide a basis for efficient deternlillatio~l
of certain properties of finite state machines- the logical foundation for an expressive,
general-purpose specification language is generally either axiomatic set theory or higher-
order logic. Historically, these approaches were developed in response to Russell’s Para-
der, which exposed a fundamental inconsistency in Frege’s  logical system OIL the eve of
its publication and frustrated Frege’s attenll)ts  to provide a consistent foundation for the
whole of mathematics. 4 Axiomatic set theory avoids contradictions by resh-icting  the
rules for forming sets- --basically, new sets may be constructed only from existing sets.
There are different axiomatizations, characterizing distinct set-theories; the best known
of these is called Zermelo-l+aenkel or simply ZF, after its founders [FEIHL84,  Ha184].
ZF contains eight axioms, all of which express simple, intuitive truths about sets. ZF
set theory provides the logical framework for several well-known specification languages,
including Z [Spi88]  and Verdi, the language of the Eves system [CKM+91].  The main
issues surrounding the use of axiomatic set theory as the basis for a specification lan-
guage are unconstrained expressiveness, the difficulty of providing semantic checking for
an inherently untyped system, and the challcugc of providing efficient theorem proving
for a system in which functions are inherently partial.

o .Actually, F’rege, Cantor, and  Dedeliind  were greatly disillusioned by the contradictions that plagued
their set theoretical foundation for the real nunlbers,  continuity, and the infinite and quit the field, leav-
ing, the developnlent  of a consistent set theory to others. The intellectual history of this period, as well as
the n]athernatics, is fascinating, but ~vell beyond  the scope of the guidebook. Rushby  [Rus93b,  pp. 254-
5] offers a brief sketch of the issues based cm material iu [Hat82,  Lev79, FBHL84,  Sho78a,  Atld86, BP83,
vB1M3,  Haz83].  The  last chapter of Hell [13e186] provides au equally brief history of the personalities as
well as the n~athernatics.
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In the context of logics, the suffix “-order” Iefcrs to the elements over which tile
logic permits quantification. Tl~e standard ~)rogressioll is as follows. The l)ropositio~lal
calculus does not allow quantification and is cflcctively “zero-order.” The predicate
calculus, which allows quantification over individuals, is referred to as “first-order” logic.
Similarly, %colld-order”  logic provides quantification over functions and predicates on
individuals, and ‘{t bird-order” provides quaut ificat ion over functions and predicates on
functions. The enumeration contiuues UI) to ~-order,  which allows quantification over
arbitrary types aucl is therefore generally equated with type theory or higher-order logic.

Axiomatic set theory assumes a flat universe; individuals, sets, sets of sets, . . . . are
undif[crent  iated with respect to quant ificat ion. which is inherently first-order. Further-
more, axiomatic set theory admits only two predicates: (E and =).5 In type theory,
the universe is ordered with respect to a type hierarchy and quantification must respect
the type distinctions. in other words, quantifiers apply to typed elements and the type
distinctions lnust be ccmsistent]y  maintained throughout the scope of the quantifier.

In highly simplified terms, simple ty~w theory avoids the logical paradoxes by ob-
serving a strict type disci~)line  that prevents paradoxical circular constructions (also
called impwdicative  definitions) .6 The simple theory of types has been used as the ba-
sis for several formal methods and theorem proving systems, including IIOL [G M93],
PVS [ORSVH95],  and TPS [AINP88].  As a foundation for formal specification lan-
guages, type! theory offers several advantages, SUCh as strong,  lllecha~~i~ed  typec}lec~i?~g
t bat confers early and effect  ivc error detection; expressive power of quant ificat ion and
higher-order constructions; and the potential for mechanized theorem proving facilitated
by the total functions that,  typically underlie simple type theory.

5 . 1 . 2  F e a t u r e s

The previous discussicm of mathematical foundations suggests that the mathematical
basis of a specification language figures importantly in determining such features as
expressiveness and mechanizability. This section briefly considers expressiveness and
other basic features of s~wcification  lauguages. .4s noted previously, mechanization
issues generally lie outside the scope of this guidebook, which is aimed at the practitioner
rather than the provider of fornlal  nlethods tools or systenls.7
—- .—— ———.

‘Although ZF reconstructs functions and predicates within set theory as sets of pairs, this set the-
oretic approach is arguably less suitable for fornlal  nlethods because it tends to be less expressive and
less easily  nlecbanized.

‘The account presented here is very sketchy. Rushby  [Rus93b, pp. 270-278] presents a somic~vhat
more thorough discussion, based on material in .Andrcws [And86],  Hatcher [Hat82], Benacerraf and
F’utnarn  [BP83], van Bentharn  and Doets  [vB1X33],  and Hazen [Haz83]. Bar}rise  and ~tchenlendy [J3E87]
have published a very  readable analysis of the semantic paradox knoum  a< “The Liar,” using an extension
of ZF set theory.

7See, for example, Rushby  [Rus96], which touches on the inlplications  of specification language design
for autonlated deduction while  advocating an integrated approach to automated deduction and formal
methods.
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5.1.2.1 Explicit  Semantics

10 provide a basis for mathenlatically well-defined, credible specifications, as well as a
standard framework for undcrstaudiug  the s})c!cificationsl  a specification language must
itself have a mathematically secure basis. lcleally, the language should have a complete
formal semantics, although languages built on staudard logics without sigllificaut  exten-
sions typically don’t have or need a completely formal semantics. on the other baud,
specification languages that are Ilot  based on standard logics  or that employ novel or
nonstandard constructions should provide a formal semantics that has undergone some
form of lJeer  review or collegial  scrutiny. Spivey’s formal semantics for Z [Spi88]  is au
example of this kind of formal  semantic account.

5.1.2.2 Expressiveness

As noted earlier,  first-order predicate calculus with equality is generally considered
the minimum foundation for a reasoi’ably ex~)ressive  specification lauguage.  On the
other hand, more rest ricted bases may be appropriate for particular applications and
more powerful bases (such as set theory and higher-order logic)  are desirable for most
applications. Of course, there are several dimensions to the notion of expressiveness,
including flexibility, versatility, and convenience and econonly  of expression. Some of
these derive from other features; for example, a rich type system facilitates more succinct
specification since much of the specification can be embedded in the types, as illustrated
ill tile two versiol Ls of the claiul, c1 (below), that the sum of two even itltegers is even.

The property of being all even integer is characterized by the predicate even?.

rx ,  y :  VAR in t
cl : CLAIM even?(x) AND even?(y) IMPLIES even?(x + y) —- ——— —..J

Alternatively, the constraint nlay bc enlbeddecl  in the type, so that variables x and y
are declared to be elements of the type consisting (only) of even integers.

r

—
x, y: VAR {z: int I even?(z)}
c1 : CLAIM even?(x + y)

Similarly, the availability of familiar pro.grammiug  language datatypes aud construc-
tions confers considerable convcmieuce  and clarity whel~ dealing with such structures as
arrays, records> lists, and sequences. There are also trade-offs; for example, in the case
of executable spccificat ion languages, finit ellcss collst  raiuts imposed by executability
can compromise expressiveness.
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5.1.2.3 Programming Language Datatypes  and Constructions

L40st specification languages sup~)ort at least some of the familiar programming language
dat,aty~)cs,  such as records, tu~)les, and enunlmatious~ as wwll as constructions that
uldate  these structured tyqws. s SOme also support abstract data types, ilducli~lg  ‘shell”
mechanisms for introducing recursively defined  abstract data ty~ws,  such as lists and
trees, and similar mechanisms for inductively defined types and functions.

5.1.2.4 Convenient Syntax

‘There are basically two aslmcts  to the question of syntact  ic convenience: familiarity and
ease of expression, and utility for documelkation  and review. The latter is someirhat
1.sss important if the language is used in an environment that includes typesetting for
documentation. The former hinges on whether the language accommodates the user
for example, providing infix operators for standard arithmetic operations and fan~il-
iar forms of fullction  application including the use of delimiters and punctuation or
w’hether  the user must accommodate the language, adjusting, for example, to Lisp-style
prefix notation.

5.1.2.5 Diagrammatic Notation

Diagrammatic notation, including gralJllic notations as fouud, for example, in
Statematc [11+ 90], and tabular notations, as found in Parnas’s “four variable
method” [vSI’M93],  SCR [IIJL95],  and RSML [LHHI194],  provide a s~)ecification  for-
mat that can be readily understood and easily comlnunicatcd.  These notations typically
support an underlying methodology for specification and refinement. The challenge is
to provide the benefits of a diagrammatic style witli  suflcient  utlder]yillg  formality to
support a range of formal analysis techniques.

5.1.2.6 Strong  Typing

Strong typing is often considered a significant asset in specification languages as well
as in programming languages. Tile difference is that specification languages can have
much richer type systems than programming languages because the types do not have to
be directly itnldenlentable.g  The benefits of strting typing include economy and clarity
of expression, a discipline that encourages precision, and an effective basis for nlecha-
nized typechecking.  A typechecker  is a program that checks that the type discipline is

6Upriatirlg  or constructing new values of structured types from existing values in a purely functional
,vay (aualogous  to assiguulent  to array elemeuts  or record fields in imperative programn~ing  languages)
is also referred to as overriding.

glhere are ex~eptio~ls, sur.., as the  al>stract  or ~irtlla]  class  cor~structs  il~ C + +, ~)ut ‘lle  gerLeraliZatiO~l

is nevertheless a useful one.
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maintained throughout the slmificatioll;  entities must match their declarations and be
combil~ed  only with other eutities  of the same (or a compatible) type. Predictably, the
actual utility of the typechecker  (for detectiug faults, inconsistencies, and omissions)
depends both ON the logical foundation uuderlyillg the specification language and on
the diligence and skill of its implementors. For example, it is difficult to provide strict
typccheckin  gforlanguagc  sbasc don set theory without sacrificing some of the flexibil-
ity of these languages because set theory docsll’t  l)rovide  an intrinsic notion of ty~w.
On the other hand, ty~)e theory (higher-order logic) is an inherently typed system, and
languages based on higher-order logic readily su~)port strict typecheckillg.

~everthelcxs,  there are certaiu  caveats. 1,anlport  has argued against the unques-
t ioned  usc of typed formalism,  noting that types  are not hatmless  - they potentially
conlpronlise the silu~)licity and elegance of mathenlatics and conlplicate  forn~al  systems
for mathematical reasoning [IJan195]. Strongly typed languages that do not provide
overloading and type infereuce  call k rotationally complex  and frustrating to use. For
cxanlple, it 1 many specification languages, addition cm integers is often a different, func-
tion from addition on the reals, but by “ovcrloadiug” the synlttol -t and exploiting
colltext to “infer’; tile correct addition fuuction, the burden of the conlplexity  falls 011
the system rather than on the user. lhe sophistication of type inference nlechanislns
varies; systems based on nigher-order logic that provide rich type and modularization
facilities require particularly sophisticated type inference mechanisms for effective user
sup~)ort.

If a ricl] ty~w  systenl is supported by mechanized typcchecking  integrated wittl  thc-
oren~ proving so that typechecking has access to theorem proving, the expressiveness of
tile language ca~k lx further  c~lhaucecl.  For example, much of the expressive power  of
the F’VS language is achieved through the use of predicate subtypes where a predicate
is used to iuduce  a sut~ty~w OX1 a parent, type. However, tile introduction of subtypes
makes ty~)echecking  undecidable, requiring the ty~)ecbecker  to generate proof obligations
(known as Type-Correctness Conditions (TINs))  that must be discharged before the
s~)ccificatioll  can l)e considered ty~)c correct .10

5.1.2.7 Total versus Partial Functions

A total fuuctioll  ma~)s every element of its domain to some element in its range, whereas
a ~)artial  fullctio~! ulal)s ouly some clemeuts  of its domain to elements of its range,
leavi~lg  others undefined. lf’llile  most traditional logics incorporate the assumption

‘lO1’he standard PJ’S exalrlplc  is that of the division operation (on the rational), which is specified
by /: [ r a t i o n a l ,  nonzero_ratlonal  + r a t i o n a l ]  w h e r e  nonzerozational  :type = {x: r a t i o n a l  I
X # O} specifies the nonwro  rational nunlbers. l’he  definition of division constrains all uses of the
operation to have nonzero  cllvisor>.  .Accordiugly,  typechwking  a forvnula such as x # y ~ (y-x)/(x-y)
< 0 generates the ‘1’CC x # y > (x-y) # O to ensure that the occurrence of the divisiorl operatioIL
is well-typed. !Notc the use of t}lc “context” (x # y) as an antecedent in the TCC. iVfost (true) TCXS
generated in the PI’S  system arc quickly and automatically discharged by the prover during typechccliing
without user ix~terventioxl.



that functions arc total, ~mtial functions occur  naturally ill the kinds of applications
undertaken with formal methods. Givcm that most logics  assume that fuuct, ions are
total, providiug a logical basis for a specification language that admits partial functions
tcmds to be problematic. Although sonic  recent  lo.gics (including those of VDhl  [Jon90].
1{.AISI? [Gro92],  three-valued lc)gics [Urq86,  RT52, Res69, K’TB88],  and Beeson’s logic of
partiaI terms [Bec86])  allow l)artial fuuctiolls, they typically formalize partial functions
at the expense of complicating theorem proviug for all specifications, even those that
do not involve partiality. On the other baud, t rest illg all fuuct ions as total iu languages
with only elementary type systems also has undesirable consequences, iu particular, the
awkwardness of having to specify normally uudefined  values (for example, havixig to
specify division by zero). Total functions are less problematic in languages that support
suhtyl)es  and de~)cndcmt  types, as illustrated previously by the P\TS specification of
di~isiou  on the rationals  as a total operation on the domain consistillg  of arbitrary
numerators and nonzero denominators, where the latter was defined by the predicate
Sul)typc,  ?Lo7L2e7’0-rat2071  al.

5.1 .2 .8  Ref inement

Specification languages that sul)port refinement provide an explicit formal basis for the
hierarchical mappings used to verify successive steps in the development from abstract
requirements and high-level specification to code. Although most specification languages
allow refinement to be expressed, if somewhat paiufully,  explicit support for refinement
confers a distinct advat~tagc for describing the systelnatic  and provably ~orre~t “iu~plc-
mcn~tat  ion” of a higher-lever s~)ccificat  ion by a lower-level one.11

5.1.2.9 Introduction of Axioms and Definitions

In the introduction to this chapter, it was noted that a specification typically con-
sists of a collection of axioms and definitions. Axioms can assert arbitrary l)roperties
over arbitrary (new or existing) entities. Definitions arc axioms that arc restricted to
dcfiuing new concepts in terms of known cmc!s. This difference has important iu~pli-
cations; axioms can introduce inconsistencies, whereas well-formed definitions cannot.
Specification languages differ with respect to facilities for introducing axioms and def-
initions } including the rigor with which they guarantee that axioms are consistent and
definitions well-defined. Some specification languages do not allow the introduction of
axioms. Although this avoids the problem of inconsistency, it can create others. For
example, axioms are particularly useful for statiug assumptions about the environment
and the inability to define such constraints axiomatically can prese]lt  a considerable

] 1 Refinement is a topic that is not covered in this volume. A representative sample of the work in
this area, including  both model-based and algebraic approaches, may be found in the proceedings of
recent workshops 011 refinement, including [dEidRR89,  hlti’90],  as well as in [BHL90].
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drawback. On the other hand, the ability to int reduce axion~s  should always hc off-
set & a nlethod (and, ideally, nlcchatlical  support) to demonstrate their consistency.
While some ]anguagcs  prohibit arbitrary axionlat  izat ions,  others offer little or no as-
surance that definitions arc well-fornmd, that is. constructed according to a definitional
principle appropriate to the given (specification) language. The role of this principle is
to ensure what is referred to as a conservative mlension  to a theory.

“A theory A is an ‘extension’ of a theory B if its language includes that
of B and every theorem of B is also a tlmorem of A; A is a ‘conservative’
extension of 11 if, in addition, every theorem of A that is in the language of
B is also a theorem of A’ [Rus93b,  I). 58].”

The richness of the underlying logic, the strength of the definitional principle, and
the degree and power of the associated Inechanizat  ion determine the nature and extent
of the concepts that may be defiued  in a language. Recursive definitions are an exam-
pie. The problem with recursive dcfinit  ions is that they may not terminat c on certain
arguments, that is, they may bc partial rather than tcjtal. ‘There are various strategies
for extending a ddillitional  princi~)le to recursive definitions. One strategy is to prcj~ride
a fixed template for recursive definitions along vrith a meta-proof  that establishes that
all correct instantiation of the template terminate. The strategy used in PVS is to
prove well-foundeduess using a technique based on a “measure’ ) function whose value
decreases across recursive calls and is bounded from below. 12 The classic example, fac-
torial, is defined in PI’S as follows, where the MEASURE clause specifies a fuuction to be
used in the termination proof. In this case, the Ineasure is simply the (generic) identity
function supplied by the PVS prelude.

r ——-— ————.
factorial (x:nat) : RECURSIVE nat =
IF x = O THEN 1 else x * factor ial(x-1) E N D I F
MEASURE id .—. “---”---1—

?’his dcfini  t ion generates a type well-formedx!css  condition that,  must he discharged
before the definition is considered type correct. The condition states that for all natural
numbers, x, either x = O or x - 1 is strictly less than x.

Anot]ler type of definitional principle, called a “shell”, provides a conlpact way to
specify new structured types in terms of constructors, rccognizers,  and accessors  that
respectively construct new elements of the type, recognize bona fide (suh)elements  of the
type, and access (sub) elements. 13 This concis~!  specification is expanded schematically
to generate the axioms necessary to establish the consistency of the definition, and
—— .—. —

1 ‘The template approach is more restrictive, but easier to implement; it does not require theorem
proving to establish the well-definedness  of a definition as does the measure function strategy.

13 The  name “shell” WZE first introduced by Boyer aud  Moore [Div179, pp. 35-40], \vho note that their
shells were inspired by Brrrstall’s  “structures” [13ur69].



NASA. ~;~.ool  .97 59

(i~i so,ne cases) to provide other  usefu]  constructs SUC1,  as induction schen,es,  The
consistency of the axioms is assured by a meta-proof  on the shell principle. Boyer
a~ld Lfloore  make extcllsivc use of the shell lJrinciple,  axiomatizing fundamental objects
ilicluding tllc llatural nutnbers,  literal atoms, and ordered pairs, as well as new ty~ws.
PVS uses a similar, bllt somewhat more sophisticated shell mechanism to define abstract
data ty~)es  [Sha93]. ‘The ubiquitous example of a pushdown stack can be very concisely
sl)ecified  ill I’VS.

stack [ t: TYPE] : DATATYPE
BEGIN

empty: empty stack?
push(top: t, POP: stack): nonempty_stack?

END stack -. —. -—

empty and push are the constructors, empty-stack? and nonempty_stack? are the
recognizes for the corres~)onding  constructors, al~d top and pop are the acccssors for
~lollenlpty  stacks. When stack is typechecked,  a ncnv  PVS theory, stack-adt,  isgener-
atccl that collsists  of approxinlately a ~)age and a half of 1’VS a[ld prcwides  the axionls
a]ld inductioli principles to ensure that the datatype is well-fornled.

‘I1lIC  distinction between  definitional versus axiomatic specification is revisited in
Sectioll  5.2, wl)ere tllc inl~)lications  of the two styles are discussed. The point of this
some~vhat long cxcursioll has been to underscore the utility of both approaches; pow-
erful dcfi~litiona]  ~)ri~lciplcs  and arbitrary axionlatizatiolls each have a role in fornlal
s~wcificatioll,  and a s~)ecification  language that provides both accon~~)anied  by suitable
nlecllallization  is a I)otentially  more productive tool than a language that effectively
supports oIle a~)~)roacll  to tile exclusion of the other.

5.1.2.10 Encapsulation Mechanism

h4cchanis111s  that provide tile ability to modularize and encapsulate are as important
ill sl)ecificat  ioll laxlguagcx as they are in programming languages. Mechanisms t hat not
only support nmdularization,  but also allow ~)arameterization  of the modules provide
even greater utility I)ecause  they encourage reuse. For example, a sorting module can
be defixlcd ge]lcrically  and parametrized by the type of entity to be sorted and tile
ordering to be used. tliereby  allowing a single module to be (re)used  to sort entities of
difrercnlt ty~m .accordi~lg  to different ordering relations. In PVS, such a module (called
a THEORY) might al ]pear as follows, where the idea is to sort sequences of type T with
respect to tile orderi[lg  relation <=. The signature of this relation indicates that <= takes
two elements of ty~w T atld returns a Boolean value.

I SO~t  [T :  T Y P E, <= : [T, T -> bool]] : THEORY
—— J
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TO ensure that instantiaticms  are appropriate, for example, that the values provided to
tbc ordering relation in fact constitute an appropriate ordering, semantic constraints
arc associated with tbe instantiation. There are various mcxhauisms  for accomplishing
this, including attaching assumptions to the formal parameters of tbe module, as in
PVS. For exanll~le,  it may be useful to constrain <= to bc a preorder (that is, reflexive

and transitive).1~

sort[T:TYPE, <=: [T, T -> bool]:  T H E O R Y

BEGIN
ASSUMING

preorder: ASSUMPTION pre-order?(<=)

ENDASSUMING
END sort

This assumption must be discharged whenever the module sort is instantiated.

5.1.2.11 Built-in Model of Computation

Most applicationsof  formal methods iuvolvereasoniug  about computational processes.
Iuthediscussion  ofdiscrete  domain models (Section 4.3), itwasl~otedtl  latsolllesl)ec-
ification languages have a built-in model of computation, for example, in tbe form of
a process algebra as in LOTOS [1 S088] or certain progral~lt~lil~g-lal~guage  construc-
tions, such as the concurrency mechanisms offered in Gypsy [GAS89].  If a model of
computation is present in a lan.gtiagc,  it is important to ensure that tbe ccjmputational
model is suitable for tbc application at hand. For example, a study of synchronization
algorithms cannot very well be performed in a notation based on synchronous con~-
municat ion [Rus93b,  p. 162]. On tbe other hand, many specification languages do not
illcor~)oratc  a model of computation, or iucor~)orate  only a very elementary model, such
as functional composition. Using functional application and composition, almost any
logic can represent sequential computation. l,auguages  such as PVS that are based
on classical higher-order logic  are typically rich enough to specify more complex com-
putations, such as those involving irnperativc,  concurrent, distributed, and real-time
algoritbrns.  For example, important properties of distributed systems can often be
described and analyzed using recursive fuuctions [LR93b].

5.1.2.12 Executability

Executability provides a pragmatic approach tc) exploring and debugging specifications,
and to developing and evaluating test cases. Further discussion of executability may be
fouud in Sections 5.4 and 6.3.

‘“preorder? is a predicate defiued  in the PI’S prelude [0 SR93a].
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5 .1 .2 .13  Matur i ty

The advantages of a nmtum slmification  lauguagc arc similar to those  of a matutc
l~rograll~t~~itlgl  allg~lage:  documelLtatio~l  isrcasollably  acccssil)lealld  complete. tool sul)-
~)ort  is available and generally relial)lc, there  is a reasonably large body of associated
literature and al)l)lications, aud tllcre  is soInc ~ncasurc c)f standardization so that a
s~)ecificatio~l  written in the lauguage  provides au unambiguous and gcmerally accepted
description.

5.2 Formal Specification Styles

Specification style has various implications, rau.ging from readability to ease of proof.
As Srivas  and hlillcr note  in reference to the formal verification of a commercial lni-
crc)processor  (arguably the most, ambitious microprogram verification undertaken to
date) [SM95a,  p. 31]: “C)llco  ftllc~llorci  rll~)orta~lt lesson  slearned during this project
was to more carefully consider the trade-offs betwwcn  . . styles of specif ica t ion. ’ > Sri-

vas and Miller are specifically referring to a collstruc.tive  versus a descriptive style of
specification, also known as model-oriented versus l~ro~Jerty-orieT~ted,  respectively.15  A
constructive or nloclel-oricmtcd  style is tyl)ically associated with the usc of definitions,
w]lereas a descriptive or ~)ro~)ert.y-orie~ltcd  style is generally associated with tile use of
axionls.  For cxanlple, consider the mod function, which returns the remainder when one
natural nunlber  is divided by auother.  mod can be s~)ecified  constructively by defil~iug  a
recursive futlction  that returns the appropriate value. or descriptively by axioulatizing
certain of its nutnbcr  theoretic prvpertics  [SM95a, p. 28]. The descri~)tive  style cmcour-
ages u?lders~)ecijic:atio?l-  specifying less rather than more, and doiug so as abstractly as
possible thereby avoiding the tendency to focus on how a concept is realized rather
thau simply wlLat is required of it, whmeas tile constructive style tends to promote
ooerspcci’catiow  -specifying more rather than less aud doing so in greater detail and
specificity than necessary- thcreby allowillg all iltl})lelllelltatioll  bias to cree~)  ill ear-
lier than warralked. On the other band, descripti~w  or axiomatic specifications can
introduce inconsistencies aud cau be less easily read aud uudcrstood  by the uuilliti-
ated reader than constructive specifications. Constructive specification also tend to
correspond more naturally to the procedural requirements used in many ap~)lications.
Ultimately, the trade-offs I)etween  tlie two styles must be arbitrated by the application
and by the options provided by t Ilc slwcificat ioll lallguagc  used. Agaiu, Srivas and
Miller’s cxperieuce  is instructive.

“It became evident, that [the descriptive style  was] in many ways a prefer-
able style of specification . . . more readable, simpler to validate, aud . . . closer

——-— ..— —
] 50t her terminology is also found in the literature; for example, the term “prescriptive” is sometimes

used to refer to a constructive style of specificatiorl  and “declarati~’e” to a descriptive style.



to what a user wantecl to know. . . . Usiug this style would have made spec-
ifying the core set of 13 instructions much simpler. However, doing so also
would have made it easier to introduce inconsistencies in the specification.
. . . The declarative [sic, that is, descriptive] style of specification is better-
suited  for reasoning !vith complex instruction sets [Sh195a,  pp. 30-31 ].”

Many applications can benefit by the judicious usc of both styles. One approach is to use
a property-oriented axionlatization as a top-level specification and introduce a suitable
number of specification layers between the property-oriented requirenlents  statenlents
and increasingly detailed, (provably consistent ) model-oriented descripticms,  possib]y
culnliuating in an implementation-level specification. The idea is to establish that tile
iltl~)lelllelltatioll  satisfies the requirements. Few analj’ses  elaborate multiple layers----the s
exan~ple docunmted  ill [BHMY89, Bcv89]  and sumnlarizcd in Section 5.3 is a notable
exception; for most applications, Inore cost-effective strategies focus on key properties
early in the life cycle.

There are other considerations that may be viewed as stylistic, including the trade-
offs lmtween a functional style of specification versus one in which the notion of state is
explicitly re~mesent,ed,  for exanlple,  using “Hoare  Sentcnccs’)  to express pie- and post-
condit ion< on a %ate.16 Some specification lauguages  support, both styles. while others,. .
sup~)ort  only an implicit Ilotion  of state. If tlm notion of state is implicit., tile model of
computation may be more or less explicit. For exan~plc,  if t he specificat iol L of a control
systelll  must support the analysis of properties characterizing the evolution of the syst-
em over time, the (monitored, controlled, aud state) variables are typically represented
as traces, that,  is, functions from “time” to tllc type of value concerned. where t ilne
represents a frame, cycle, or iteration count. l’urely  functional specifications are in-
trinsically closer to ordiuary logic and therefore tencl to support more effective theorem
~)roving than specifications that,  involve state. In general, specifications involving state
tend to be unnecessarily constructive for earlier life cycle applications; functional style
s~)ecifications  are often adequate for the requirements and high-level design phases.

5.3 Formal Specification and Life Cycle

One approach to integrating formal specification with system development is to con-
struct a hierarchy of specifications at different levels of abstraction, each level corre-
sponding to a different phase of the software life cycle and each level elaborating or
“refining” the immediately preceding level. Using formal proof to establish that each
level of the design is a correct i~llI~lel~~e~~tatioll  of its immediate ancestor, it is possible

——
—16 As an antidote to then-current program verification approaches that generated verification condi-
t ions (1’CS) from programs annotated with logical assertions, yielding I’CS that }vere diflicult  to map
back to the original program (and the user’s intuition), Hoare extended the logic to include program
elements, thereby allowing the user to reason directly about programs [Hoa69].
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to develop a proof chain that automatically demonstrates that required properties are
satisfied at all levels - from the requirements specification down through the imple-
mentation (code level). Such proofs typically use a lnapping function that, relates tile
objects of one level with the objects of the immediately preceding level and prove  that
the rnappil~g is preserved through all possible executions. NTeedless to say, hierarchical
specification over multiplc levels is an arduous and costly undertaking. The “CL]  short
stack” [Bev89]  a mechanical verification of a multilevel system from all a~)p]ications
program in a high-level language down through the gate-level design of a microprocessor
with intermediate lCVCIS including a compiler, assembler, and linker - exem~)lifies  this
approach. The LaRC verification of a reliable colnputing platform for real-time control
is another of the few extant examples [13 DH94].

Formal specification is typically most cost-effective early in the life cycle of a system.
This is true for several reasons, notably the eflectivencss  of conventional verification and
validation activities later in the life cycle versus earlier, when there is an acknowledged
dearth of cfl’cctive  strategies and tools, and the difficulty of formal specification during
the later life cycle, in the context of highly detailed, implement at ion- sl>ecific models.
‘This rationale dovetails nicely with the largely pragmatic considerations that have fo-
cused most applications of formal methods on critical or key properties rather than on
“total correctness.” As a result, formal specification is most productively used as an
integral part of the iterative development of rccpiremcnts  and high-level design, rather
than as a one-time, bcnedictory  activity at the end of the process.

5.4 The Detection of Errors in

There are several potential sources of error in a

Formal Specification

formal specification:

●

●

●

It can say too little or uuderspecify,  that is, be incomplete

It can say too much or overspecify,  that is, be overly lJrescriptive,  thereby unnec-
essarily  constraining later phases of the life cycle

or, it can be wrong, that is, it can be internally inconsistent or it can specify
something anomalous or unintended.

@erspccification  is diflicult to detect mechanically and typically requires considerable
17 The other faults are generally Inore amenable toexperience to recognize and avoid.

tile types of fault detection discussed below. Including formal proof, there are basically
five regimens for detecting anomalies in a specification. The last four of these can be

17Jones characterizes a notion of overspecification  or implementation bias for constructively defined
specifications. Briefly, a specification is biased with respect to a given set of operations “if there exist
different elements of the [underlying,] set of states which cannot be distinguished by any sequence of the
operations.’ : [J01,90, pp. 216-219].
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effectively nlechanized  aud typically occuI  in the order  given , since there is llo point in
attempt ing proofs on a spccificat ion that is not syntactically and senlant ically  correct.
F@ the sanle token, there is no point in checking for semantic anonlalies  in a specification
that is not syntactically well-formed. 011 the other hand, cacll of these tccl]niclues has
a ~)articular  utility, and an integrated approach that ex~)loits  the strengt]l  of each is
undeniably the Incjst effective. Ill sonic cases, this integration is inherent in a systenl,
for exalnple,,  cooperating decision procedures itl a theorenl  prover, or the tight coupling
of a typechecker and a proof checker to provide strict typecheckitlg  in the presence of non
trivially decidable properties. In other cases, the integration is achieved @ judicious
use of available techniques, for exanlple,  “prototyping”  a potentially dillicult  and costly
proof by using model checking, simulation, or aninlation  to exanline  a finite case before
attenl~)ting  the nlore general proof with a theorenl  prover or proof checker. 111 any
case, the utility of the fault-detection techniques discussed below can be significantly
enhanced by exploiting the potential synergy created by their judicious conlbinat ion.

Inspection: Inspections run the gamut from informal peer review to well-defined, for-
malized  procedures. The Fagau-style  inspections discussed in Section 3.2 are among the
most frequently used quasi-formal inspections. In theory, these manual ins~)cctions  ca~l
detect all the error types ~loted  above,  although in practice, manual inspections are llot
as effective as mechanized tools in detecting subtle or drop-seated ano~nalicsj such as
logical inconsistencies and (unintended) implications, or in consistently locatixlg  senlall-
tic or even syntactic errors ill specifications. NTcwcrthclcss, Fagan-style  inspections and
other similarly exacting inspection methods can effectively complement formal methods.
and vice versa.  The AAMP5  microprocessor project illustrates this point nicely. hliller
and Srivas  note the surr)rising

“extent t,o whicl)  fcmnal specifications and inspections complemented
each other. The inspections were improved by the use of a formal nota-
tion, reducing the amount of debate over whether an issue really was a
defect or a personal preference. In turn, the inspections served as a useful
vehicle for education and arriving at consensus on the most effective styles
of specification. ~’his is reflected in . . . the lower number  of defects recorded
in the later inspections [MS95,  p. 9].”

As tliis quote suggests, the sy~nbiotic relationship between  formal methods and conven-
tional inspection techniques provides a natural medium for technology transfer.

Parsing: I)arsing is a forln  of analysis that detects syntactic inconsistencies and anonla-
lies, such as misspelled keywords, missing delimiters, or unbalanced brackets or pareli-
theses. Parsing guaranties (only) that a specification conforms to the syntactic rules of
the formal specification language in which it is written.

Typechecking: ~’ypechecking is a form of analysis that detects semantic inconsis-
tencies and anomalies, such as undeclared names or ambiguous types. As noted in
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Sect ion 5.1.2, formal specification languages based on higher-order logic aclmit cffec-
t ive typcchecking, while in general, those based on set theory do not. When available,
strict tyl)echecking  is an extrelnely  effective way of determining whether a specification
Inakes semantic sense. Again as noted in Section 5.1.2, the type system of a specification
language may ~lot  be trivially decidable, ill which case typechecking is similarly unde-
cidable and proof obligations lnust be generated and discharged before the specification
is considered typechecked.

Execution (Sirnulation/Animation): Direct execution , sinlulation, and a~linlation
offer further options for detecting errors in a specification. If a formal specification
language is directly executable, or contains a directly executable subset, execution  and
anitnation can be acconlnlodated in the same formally rigorous context ill wllicli  the
specification is developed. If not, the formal  specification must be reinterpreted into
]Iigh-level,  dynamically executable program text that bears no formal relation to the
original specification (see [h4J3T95,  Chapter 5] for an example of the latter). Some lan-
guages offer both, that is, a directly executable subset, as well as the option of user- or
systerll-dcfitled  l)rograI~l  text to drive animation of I1011eXWUtZLb]6!  l)arts of the specifica-

tion. The concrete represcntat  ion of algorithms and data structures required by most
finite-state enumeration and model-checking methods (see below) makes them directly
comparat)lc to direct execution techniques, as found, for exatnplc,  in the VDM-SL  Tool-
box [VDh!l]. In some cases, model checkers also provide simulation. For example, the
reachability analysis strategy used by state-exploration model checkers can also be used
to “simulate’) system  behavior by exploring a single path (rather than all l)ossible paths)
through the state space. 130th Murg’~ [DDHY92, ID93]  and SPIN [H0191]  call sinmlate
the execution of n~odels  written in their respective languages. The type of errors found
by direct cxccutioll  techniques varies, depcndi]lg on other error detection techniques,
if any, used prior to sitnulation or anitnation. For exanlplej  [MW95, p. 92] aninlated
a specification that had previously undcrgolic only syntactic analysis and weak type
analysis (essentially lin~ited  to arity checking on function and operation calls). In their
case, aninlation  detected two type errors in addition to errors duc to rnisinterI)retation
of the requircnlcnts, incorrect s~)ccification  of requircnlents, and erroneous translation
from the specification into the sinlulation  lauguagc.  t3xecutability  also supports the dc-
vclopnlcnt  and systcnlatic evaluation of test suites, thereby potentially exposing flaws
and oversights in a test regime, as well as in the corresponding specification.

Theorem Proving, Proof Checking, and Model Checking: Tlkeoren~  proving :

proof checking, and model checking are all forms of analysis that can be used to detect
logical anonlalies  and subtle infelicities in a forn]al specification. Although historically
these forms of validation were used to prove correctness of programs and detailed hard-
ware designs, they are llow~ typically used for fault detection and design exploration,
where they arc arguably most effective, as well as for verifying correctness. Tllc  analy-
sis provided by theorenl  Ixoving, proof checking, and model checking not only involves
the specification, but, also its logical consequences, that is, all formulas that can be
proved fronl the original specification using formal deduction. There are several issues



in the validation of formal specifications. One is the issue of internal consistency, that is,
whether the specification is logically consistent. If ~lot, the specification fails to say any-
thing useful. Another is the issue of l[lcal~illgflllllcss,  that is, whether the specification
means what, is intended. A third is the issue of completeness. Althougll  various notions
of completeness have been pro~)osed,  the general idea is that a specification should iden-

‘8 The type of testing andtify all contingencies and define t)ehavior appropriate to each. .
error detection offered by theorem ~Jr’ovillg,  proof checkino~, and modeling is in many
ways analogous to traditional testing reginles; the theorem prover, proc)f  checker, or
model checker “executes’)  the specification, allowing the practitioner to explore design
options and the implications of design choices.

5.5 The Utility c]f Formal Specification

A specification may serve many different functions. Lamport  [Lam89, p. 32] has sug-
gested that a formal slwcification  functions as ‘{a contract kx%wecn the user of a system
and its implementer. The contract should tell the user everything hc must know to
use the system, and it should tell the inlplementer  everything he must know about tile
system to implement, it. In princi~de,  once this contract has been agreed upon, the
user aud the implementer have no need for further col~~~[~~ll~icatioll.”  Lamport’s  simile
highlights three issues. First, as noted earlier, one of the Inost  important functions of a
formal specification is analytic; using the deductive apparatus of the underlying formal
system, a formal s~)ecification  serves as the basis for calculating, l)redictillg, and (in
tile case of executable specificatiolls)  testing system behavior. However, a formal s~)ec-
ificatiou  may also serve all important descriptive function, that is, provide a basis for
documenting, communicating, or I)rototyping tllc l)ehavior and properties of a systenl.
Second, a (completed) specification represents the formalization of a consensus about
the behavior and properties of a system. Diverging somewhat from ],allll)Ort’s  descril)-
tio~l and focusing on the early life cycle, we prefer to view a formal specification as a
contract bet weell  a client, a requirements analyst (and possibly also a designer), and a
forma] methods practitioner. Third, while in l)rinciple, a fitlalized  contract precludes
the need for further communication among the interested parties, in practice, moving
from informal requirements to a formal specification and high-level design is an iterative
rather than a linear process; issues ex~)osed in the dcwelopment  of the formal specifica-
tion Inay IIeed to be factored back into the requirements, and similarly, issues raised by
the high-level design may percolate back to impact either the formal specification, the
requirements, or both.

Although a specification that has not been validated through proof can be aptly
compared to a program that has not been debugged, there are nevertheless rc!al benefits

18 Rushby  [Rus93b, pp. 69-71] cites several specialized definitions, including characterizations of comp-
leteness for abstract data types arid for real-time process-control systems.



~TASA_  G~_OOl .97 67

to be gained from modeling and formally specifying requirements and high-level designs,
including the following.

. Clarify Ikquircments  and High -Lctwl Designs: A formal specification provides a
concise and unamljiguous statcmcmt  of the u~ldcrlying  mquircmlents and design,
thereby exposing fundamental issues that tend to be obscured by lengthy informal
statements. ‘1’hc formalization of the requirements for the rece~lt ol)tilnization of
Space  Shuttle Reaction Control System Jet Selection (JS) [NASA93, A1)pcndix  B]
recounted here in %ction 3.1.1 illustrates this ~)oint  nicely.

● Articulate  Implicit Assumptions.” Forlnalisms  can help identify and express inl-
p]icit assumptions in requirenwnts  and design. For example, the concept of state
variables is not explicitly lneutioned  in S1)ace Shuttle requirements: their existcncc
must bc il[ferred  from context by noting the function and persistence of local vari-
ables. F,xplicitly  modeling and specifying state variables can significantly increase
the precision and perspicuity of the requirements, as illustrated by the partial
specification of the new Space Shut tlc Global Positioning System (GF’S) navi-
gatioxl  capability [DR96].  Identifying ulldocunlented assunll)tions  is particularly

important in the context of an cwolvillg  system design.

Another aspect of requirements and high-level design that frequently contains inl-
plicit assumptions is the interaction of the systeln with the environnlent  or context
in which it is assumed to ol)erate,  including the input space. hlaking input coll-
straints  and environmental assumptions explicit often exposes requirements and
design-level issues that have been overlooked. ‘ g  l’he specificatioll of the Space
Shuttle IIeading  Ali,gnnwnt  Cylinder Initiation] Predictor and Pc)sition  Itrror LJis-
plays Change Request (HAC CR) is a good exanqde of the value of the process
of formalization for identifying and capturing undocunlentedj donlaimspecific  as-
sunlptions. Quoting fronl the report for the HAC CR fornlal  nlethods ~Jroject:
“Capturing such [domain-specific] knowledge and docunlenting  it as rationale with
tile specification is valuable [RI196,  I). 17] .“

● Ezposc Flazm: The process of formalizatioxl  invariably ex~)oses  significatlt flaws
in requirements and high-level desig~~, even without the benefit of analysis or
proof. In the case of strongly typed specification languages, typcchecking  can pro-
vide a potent tool for revealing anomalies in the specification, as well as potential
anomalies in the requirements and design, and cloing so early in the life cycle while
errors are far less costly to correct. The previously mentioned GI’S project [DR96]
provides a nice example of the utility of specification for revealing anomalies in
immature requirements for large, complex systems, especially among subsystem
interfaces. Executing a specification provides another productive means of expos-
itg flaws, as noted in [MW95].

19T’he A-7 IvIethodology [vS90], among others, has paid particular at tentioxl to the explicit enunlera-
ticm of relevant environmental variables.
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● ldcnti~g Exceptions: The discipline involved in fcmnalizing  requirenwnts  and high-
level design alsc) serves to identify “end cases” and exceptions and to encourage
nlorc t borough considcrat ion of these exceptional cases,  as illustrated in [LFB96].

● Ez]akute Test Coverage: An executable specification may also be used to run and
evaluate proposed test suites, yielding a measure of test coverage relatively early
ill the life cycle.

‘The utility of formal  specification also extends to ~sork in program transformation
and synthesis, that is, the mechanical application of a series of transformations that
derives a program from its specification. This approach differs from traditional com-
pilation of ILigh-level  languages i~lsofar  as it seeks to bridge a far larger language gal)
between in~)ut (slJecification)  and output (program). To make this feasible, the scope
of the specification language must tm severely constrained, and/or the transformation
process must be guided by a skilled programmer. The techniques rely on a set of
correctness-preserving transformations that guarantee that the resulting program will
exhibit the same behavior as its specification. Ideally, the tra~lsformation  also confers
additional (desired) ~woperties  such as efficiency. Suggestive, but by no means exhaus-
t ive, examples of this broad spectrum of techniques are the following:

. Problems  expressed in a specification-oriented language (for exanlpk:,  pure Lisp)
typically exhibit clarity and sinlplicity,  but lack the efficiency and portability that
conlcs from a conventional programming language (for example, FORTRAhT  and
C). 130Y1c has I) UISUCCI a transformational approach to bridging this gap [BoY89]
that involves successive deconlposition  into a series of steps that can be acconl-
I)lished  by the autonlatic application of a set of s~)ecial-purpose,  but straightfor-
w-ard  transfornlations. Ekatnplcs  include the use of a succinct functional speci-
fication to derive  a FOI{TRAN  iltl~>le~t~er~tatio~l  of an algorithm for solving one-
din~ellsiollal  hy~)crbolic  partial  differential  equations  [BH91].

● A certain class of lJxoblenls can be solved by a carefully programmed instance
of a general al~orit IInlic  technique, for example, search problems can be solved
by a ditride-allcl-ccJ1lclller  strategy. KIDS (Kestrel Interactive Development Sys-
tmn) [Smi90] ~)rovides  tools for deductive inferencing,  algorithm design, expres-
sion sim~)lification.  finite differencing,  partial evaluation, data type refinement and
other .gcneral tratlsformations  that allow a user “ to synthesize complex codes enl-
bodying algoritllr[ls.  data structures, and code-optimization techniques that might
be too difficult to produce manually [SG96,  p.31].” The approach is interactive; the
user guides the systenl i~L the application of powerful correctness-preserving trans-
format ions. KIDS has I)ecn applied to a variety of domains, including schedul-
ing, combinatorial design, sort ing and searching, computational geometry, pattern
matching, and mathematical programming.
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● Tile class c)f finite futlctions,  including for cxanqdc,  finite state  transitions, lends
itself totabular  representations that can bcnlanipulated  toperform various consis-
tency a~ld con~~dcieness checks and, in sonw cases,  to generate code and docunlen-
tation. For exanlplc, the decision table, “a tabular format for specifying a conl~)lex
set of rules that choose anlong  alternative actions” [HC95, p. 97] provides the basis
for the ‘1’ablewise tool [HC95,  HGH96]  that, tests  thcw  tables for consistency and
conlpletelless,  performs a linlited  fornl of structural analysis, and generates Ada
code inlplelnculting  the table, as well as 13nglish-language docutncmtatioll.

● If an application domain is suitably restricted, it is possible to dcwelo~)  a con~-
~)letely  automatic process for synthesizing a program from its s~)ecification.  l’hc
AMPHION  system [LPPU94] illustrates this approach for the domain of solar
systcn~ kinematics. The user specifics a problcm via a graphical user intcrfacc
portraying the domain’s astronomical objects and desired configuration. The sys-
tem then selects components from a preexisting FORTRAhT  subroutine library
and synthesizes the “glue”  code that assenltdes  these components into a complete
solution. ‘1’llc system applies collst ruct ive theorem proving to perform its selection
and synthesis. The cnd user, however, operates purely at the specification lcwel
and need never interact with this utldmlying  mcchallisnl.

5.6 A Partial SAFER Specification

The PVS specification of SAFER is constructive in style and retains the explicit notion of
state represented in the SAFER models developed at the end of Chapter 4. To facilitate
readability and emphasize the n)appiug  between infornlal  description, requirenwuts, and
the PVS fornlalization,  the specification also preserves the bias to}vard representative
rather than abstract forn)alization  introduced into the n~odels  of the preceding chapter.
The conlplete PVS specification is presented in full in Section C.3.3. The fragment
discussed below continues the focus on thruster selection. This discussion is intended to
be self-contained; if additional infornlation  on the relatively few PVS language features
necessary to understand the fornlal  specification can be found in Section C.3. I. Full
PVS docutnentation is available in [0 SR93b].

The PVS s~)ecificatioll  of thruster selection is a straightforward elaboration of
the underlying functic)na]  model dcweloped  in Chapter 4. Accordingly, t}le skele-
ton of the PVS theory for thruster selection shown below consists of three  func-
tions: integrated_commands,  which forms an integrated, six degree-of-freedom com-
mand from the HCM and AAH inputs; selected .thrusters,  which takes an inte-
grated command and selects the thrusters necessary to achieve the command; and
select ed.actuators,  which acts as an interface function and consists of the composi-
tion of integrated_ commands and selected-thrusters. Each of these functions is pa-
rametrized  by from onc to three parameters denoted by a parameter name followed by
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a type name. ‘1’he type defiuitious  for these types  are not, reproduced hem, but are avail-
able iu subsequent discussion and in Appendix C either iu the theory avionic s.types
or in the theory most closely associated with the object iu question. For example, the
types six.dof_command  and rot-cormand  arc defiued  in the theory aviorLics_types,
while the type AAH-state is defiued itl the theory automat ic_attitude_hold.  The type
actuator_commands  is defined as a thruster_li  st. Thruster selection is fcmmalizecl  as
a PVS theo?y aptly named thrust er_selection.  The theory is the basic organizational
concept iu I’VS and provides the modularization aud encapsulation familiar in modern
~)rogramluing  languages; theories may export to and import fmm other theories.

r

—-—.——.———.—— — .—— ——.. ——.

thruster_ selection: THEORY
BEGIN

I
integrated. commands ( (HCM: six_dof_command) ,

(AAH: rot_command)  ,
(state: AAH_state)) : six_dof_command = . . .

select ed_thrusters(crnd:  six_dof_command)  : thruster_list  = . . .

selected_ actuators ( (HCM: six_dof_command) ,
(AAH: rot_command)  ,
(state: AAH_state) ) : actuator-commands =

select ed_thrusters (integrated_ commands (HCM, AAH, state) )

END thruster_ select ion

Fleshing out the skeleton of thruster_selection  introduces a type definition
(thruster_list)  and five additional functions. However, the first thing to notice about
this elaborated version is the IMPORTING clause, which allows visible entities introduced
iu the theories avionics-types, propulsion module, and automat ic_attitude_hold
to be imported and used in the theory thruster_select  ion.

[

— —— —-

IMPDRTING  avionlcs_types,  propulsion_ module, automat ic_attitude_hold

——. .. —..- 3

For example, this importing clause brings iu several type declarations, iucluding those
mentioned above for six.dof -command and rot-command. The import iug clause is fol-
lowed by a local declaration of the type thruster-ii st, which is defined as a list of
thruster_names.20  The type thrust ernames  is in turn imported from the theory
propuls  ion module.
-—- —.

zOThe  thru~ter_ll~t  d~cla~atiorl  actually USeS the built-in list datatype provided in the p~s Pre-

lude [0 SR93a,  pp. 39 41,78 80], [Sha93]. -
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[ - - - - - - - - -  - - - - - -

—— . _ _  . —  _ _ _ _

thruster.list: TYPE = list [thruster.name]

—— — — . .‘-----1

The next d e c l a r a t i o n  i n t r o d u c e s  t h e  lloolean-valued  f u n c t i o n  rot-cmds-present,

whose s ignature  inc ludes  onc patwneter  of tylw rot.command.

[.

rot_cmds_present(cmd:  rot_command):  b o o l  =
( E X I S T S  ( a :  rot_axis): cmd(a) /= Z E R O )

1— — — — — —  - — _

~’lle declaration for rot-command defines a function from type rot-axis to type
axis_command.

[.

—————.——-—— .— -.
rot_axis: TYPE = {roll, pitch, yaw}
axis_command: TYPE = {NEG, ZERO, Pos}
rot_command  : TYPE = [rot.axis -> axis_command]—— .—_ .— .— —. .—

rot-axis is an enumerated type corresponding to the three  rotation axes: roll,  pitch,
yaw. axis_command  is anelmn~erated  tyI~ewitl~t  llree~’aluesc  orresl)o~ldil~g  tothe IICM
or AAII command values: negative, m-o,  c)r positive. Tlw  notation cmd(a) denotes a
fuuction that nla~)sarotatio  naxis  (one of: roll,  ~)itch, yaw) tothe commandassociated
with that axis (one of RTEG, 2ER0, PC) S). rot.cmds-present  returns the value of
the existentially quantified formula slLown  above. That value is true if them is at least
one rotational axis wlmse associated (HCM or AAH) command is ncmzero,  and false
otherwise.

l’hc next functiou. prioritized.tran_cmd,  specifies the requirement that there is
at luost one translation command at a given cycle and that translation axis commands
are prioritimd  ~vitll  X-axis commands having highest priority and Z-axis commands
lowest ~)riority.  ~’llcexlf:oclillgtakes  thcforn] ofanestcd-if  expression and usesa PVS
override ex~mssiol) to derive a new value from null -tran-command, which is written
as an un~latnccl  fullct io~l or lambda expression. ‘1’he result of an override expression
is a functiollzl t)lat is exact]v the Satne as the original, except that it takes on nelv.
values at tile s~)ccified argun~el~ts. A tran.command does the analogous mapping for
the translation axes. X. Y, and Z that the rot-command does for the rotation axes.
Accordingly : in tl]e first branch of the nested-if ex~nwssion, if an X-axis conlmalld is
preseilt  (the value of tran(X) is not equal to ZERO), null _tran_command takes on the
value of tran (X) for the argument X, and similarly for the other branches of the nested-if,
whicil  handle tllc cases for Y- and Z-axis updates.
_—— ——— ——.. —. .. ——— —.— ..— —

‘1 Or recorrl;  a PI’S record  may also  bc modified by an override expression
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rtran_axis: TYPE = {X, Y, Z}
tran.command: TYPE = [tran_axis -> axis.command]
null_tran_command:  tran_command = (LAMBDA (a: tran_axis): ZERO)

prioritized_tran_cmd(tran: tran-command):  tran-comand  =

l..
IF tran(X) /= ZERO

THEN null_tran_command
ELSIF tran(Y) /= ZERO

THEN null_tran_command
ELSIF tran(Z) /= ZERO

THEN null_tran_command
ELSE null_tran_command

ENDIF

WITH [X := tran(X)]

WITH [Y := tran(Y)]

WITH [Z := tran(Z)]

Cklptcv 5

Thcfunction combinedzot  .Cmdstransfornls rotation conunands fronltheHCh4and
the AAH and returns a “coml~ined”  rotation conmand that inhibits HCM con)nlands
at the tin~e AAH is initiated (ignoreHCM),  but otherwise gives nonzero HCM rotatio~l
ccmunands prcxedence over AAH rotation comtnands. The argunlent ignoreHCM is a
predicate, that is, a function with range type Boolean. IVote  the use of the lan~bda
expression to map over the three rotation axes.

rrot_predicate: TYPE = [rot_axis  -> bool]
I

combined_rot_cmds ((HCM_rot: rot_command) ,
(AAH : rot_command) ,
(ignore_HCM: rot_predicate)):  rot_command  =

(LAMBDA (a: rot_axis):

L

IF HCM_rot(a)  = ZERO OR lgnore_HCM(a)
THEN AAH(a)
ELSE HCM_rot(a)

ENDIF)

Usingthepreceding  definitions, integrated-commands iselaboratedas  shown below.
Tlleonlynew’  bit ofF’VS that requires explanation isthe  record structure used tos~)ecify
the integrated six degrec-of-freedomc  ommand. InPVS, record types take theform

[#ol:il,... a, flt,,#]

where the a~ are the accessors  and the tz are the component types. Record access in
PVS uses functions and functional notation, for example, az(r), rather than the more
usual “dot” notation r-.ai. Elements of the PVS record type (or, equivalently, record
constructors) have the form

(#cll:tl,... f2,tit,l#)
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Wr example, the record type  six .dof c o m m a n d  h a s  t w o  acccssors, one each of type

tran-coxnmand  and t y p e  rot_command. In other  words, at) integrated six degree-of-
frecdom command has two components rcprmcntiug the commanded acceleration in
the translational and rotational axes. Since both components am modified, record con-
structors  rather that] override expressions arc used. Details of the AAH_state  record
type have been suppressed below, but a~qwar  in full in Appendix C. The requirement
that IICM rotation commands suppress  IICM tramlatioxl  comnlands, but HCN4 trans-
lation commands may coexist with AAH rotation commands, is specified by the two
branches of t lle if-ex~)ression.

rot_ cmds_present  (cmd: rot. command) : bool =
(EXISTS (a: rot_axis):  cmd(a) /= ZERO)

six_dof command: TYPE = [# tran: t.ran_command, rot: rot_command #]

AAH_sta te : TYPE = [# ignore_HCM: r o t _ p r e d i c a t e ,  .  .  . # ]

integrated_commands ((HCM: six_dof_command) ,
(AAH: rot.command)  ,
(state: AAH_state)):  six_dof_command =

rot_cmds_present  (rot(HCM))
THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM) , AAH,
ignore_HCM(state)) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM)  ),
rot := AAH #)

ENDIF

Astute readers may have noticed that this version of integrated_commands  does
not take into account the additional requirement that AAH is disablecl  on an axis ifa
crew!~lell~ber rotatioll col~~l~lal~d  isisslledfortllat  axis while AAH is alive, resulting inthc
~>ossibilit~~  reflected  illtlle  l~~odcl ill Clla~~ter  4astlle  tra1lsitio1]  “threcaxesoff,”  where all
threcaxesh  avetxcndisablcd  in this way. .Actually,  the version of integrated-commands
presented above is slightly simplified; the full version in Appendix C does hatldle this
case.

The next two functions, BF’_thrusters  and LRUI.thrusters, specify the thruster
select logic presented in the tables ill Figures C.2 and C.3, respectively. ‘The details
are omitted here, but the full version in Appendix C specifies these tables using nested
PVS tables that yield  admirable traceability bciween thedocumentatioll  and the s~)ec-
ification.
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— — —

BF_thrusters(X_cmd,  pitch_cmd,  yaw_cmd: axis_command):  thruster_list  = . . .

LRUD_thrusters(Y_cmd,  Z..cmd,  roll_cmd:  axis_command): thruster_list = . . .

—- 1

Thcelaboratwl version of selected.thrusters  reveals son~ewbat  n~ore about how
an integrated six degree-of-freedom con~n~and is mapped into a vector ofactuator  con}-
lnallds. The specification uses a PVS let expression, a syntactic convenience that
allows the introduction of bound variable nan~es  to refer tc) subexpressions. In this
case, the bound variables refer to the back/front (BF) and the left/rig;llt/uJ~/dow’11  .
(l,RUD)  thrusters defined by the thruster select logic (specified as BF-thrusters  and
LRUD-thrusters) to inlplenlent  the conmanded  translational and rotational accelera-
tions. ‘The resulting list of thrusters is formed by appending the BF and LRUII thruster
lists.

➤ ✍��✎ ✿��
1

selected_thrusters (cmd: six_dof_command):  thruster_list =
LET BF_thr =

BF_thrusters(tran(cmd)  (X), rot(cmd) (pitch), rot(cmd) (yaw)),
LRUD_thr =

LRUD_thrusters(tran(cmd)  (Y) , tran(cmd) (Z), rot(cmd) (roll))
IN append(BF_thr,  LRUD_thr)

L _  .  .  .  . . _ _ _ _ _ . — .— J

Once again, the function presented here is a somewhat sin~plified  version of the
specification in Appendix C. In this case, the sinlplificationhas  been to omit the logic
corresponding to the right n~ost two colutnns of Figures C.2 and C .3, which specify
the use of two additional thrusters for certain commanded accelerations if the given
constraints are satisfied. For exan~ple, the thruster select logic for “-X, -pitch, -yaw”
(first row of the table in Figure C.2) specifies thruster 134 and, conditionally, thrusters
B2 and B3; 132 and 133 arc selected only if there is no conmandcd roll.

The final function in theory thruster-selection is the interface function
selected. actuators, which was previously introduced as it appears in Appendix C.
Thesomcwhat  abbreviated version of the full theory discussed here is collected in full
below. Note that type declarations from other theories reproduced above to facilitate
the discussiondo  not explicitly appear, but are implicitly “visible” via the IMPORTING
clause.
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thruster. selection: THEORY
BEGIN

IMPORTING avionics.types, propulsion.module, automatic_attitude_hold

thruster_list: TYPE = list [thruster_name]

rot_cmds_present(cmd:  rot_command): bool =
(EXISTS (a: rot_axis): cmd(a) /= ZERO)

prioritized_tran_cmd(tran: tran_command): t ran_command =
IF tran(X) /= ZERO

THEN null_tran_command
ELSIF tran(Y) /= ZERO

THEN null_tran_command
ELSIF tran(Z) /= ZERO

THEN null_tran_command
ELSE null_tran_command

ENDIF

WITH [X := tran(X)]

WITH [Y := tran(Y)]

WITH [Z  := tran(Z)]

combined_rot_cmds  ((HCM_rot: rot_command) ,
(AAH: rot_command) ,
(ignore_HCM: rot.predicate)): ro t_command =

(L A M B DA (a: rot_axis):
IF HCM_rot(a)  = ZERO OR ignore_HCM(a)

THEN AAH(a)
ELSE HCM.rot(a)

ENDIF)

integrated_commands ((HCM: six_dof_command) ,
(AAH: rot_command) ,
(state: AAH_state)): six_dof_.command  =

IF rot_cmds-.present(rot(HCM))
THEN (# tran := null_tran_command,

rot := combined_rot_cmds(rot(HCM)  , AAH,
ignore_HCM(state)) #)

ELSE (# tran := prioritized_tran_cmd(tran(HCM) ),
rot := AAH #)

ENDIF
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BF_thrusters(X_cmd, pitch-cmd, yaw_cmd: axis-command):  thruster-list  =  . . .

LRUD_thrusters(Y_cmd,  Z-cmd, roll_cmd:  a x i s - c o m m a n d ) :  thruSter_list = . . .

selected_thrusters(cmd: six_dof_command): thruster_list =
LET BF_thr =

BF_thrusters(tran(cmd)  (X) , rot(cmd) (pitch), rot(cmd) (yaw)),
LRUD_thr =

LRUD_thrusters(tran(cmd)  (Y) , tran(cmd)  (Z), rot(cmd)  (roll))
IN append(BF_thr, LRUD_thr)

selected_actuators(  (HCM: six_dof_command)  ,
(AAH : rot_command) ,
(state: AAH_state)):  thruster_list =

selected_thrusters(integrated-commands  (HCM, AAH, state))

END thruster_selection



Chapter 6

Formal Analysis

Formal analysis refers to a broad range of tool-based techniques that can be used singly
or in combination to explore, debug, and verify formal specifications, and to predict,
calculate, and refine the behavior of the systems so specified. These analysis techniques,
which differ primarily in focus, method, and degree of formality, include direct execution,
sitnulation,  and animation; finite-state methods (state exploration and model checking);
and theorem proving and proof checking.

This chapter describes each of these techniques and suggests strategies for their
productive combination. It also examines the role of proof in theory interpretation,
proofs of properties, and enhanced typechecking, as well as the utility of the proof
process for calculation, prediction, and verification. The issue of mechanized support
for formal analysis is presented, albeit in a suggestive rather than exhaustive discussion.
The chapter closes with the specification and proof of the SAFER requirement that
describes the maximum number of thrusters that can be fired simultaneously.

6.1 Automated Deduction

Automated deduction or theorem proving refers to the mechanization of deductive rea-
soning. Deductive methods provide a foundation for reasoning about infinite-state sys-
tems and are typically preferred for abstract, high-level specifications and data-oriented
applications. There are a variety of approaches to mechanizing formal deduction, re-
flecting the relative maturity of the field of mechanical theorem proving. This section
begins with background material on formal systems and their models, followed by a his-
tory of automated deduction, a survey of techniques underlying automated reasoning,
and concluding remarks on their utility.

77
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6 .1 .1  Background:  Formal  Systems and Their  Models

The material in this section provides technical background that some readers may prefer
to skip the first time through, or to detour altogether. Dangerous bend signs bracket
the most technical parts of the section.

6 .1 .1 .1  Proof  Theory

A formal system consists of a nonempty  set of primitives--typically a set of finite strings
taken from an alphabet of symbols; a set of axioms, that is, statements, taken as given,
involving the primitives; and a set of inference rules or other means of deriving further
statements, called theorems. 1 The axioms and rules of inference of a formal system are
referred to as its deductive sgstern. A set of axioms, together with all the theorems
derivable (provable) from it and from previously derived theorems, is called a theory.  A
proof of a theorem in a formal system is simply a series of transformat ions that conform
to the rules of inference of that system. As such, the notion of proof is strictly syntactic.
The symbol t- (read “turnstile”) is used to express this notion of proof. Thus I-L +,
read “@ is provable in logic L“ (or, equivalently 1- @ if the logic is unambiguous from
the context ), means that + is a theorem in the given logic, that is, @ is provable using
the axioms of L without further assumptions. In general, the relationship between
a sentence @ and the set of sentences, -yo . . . . . ,7., asumed for its proof is expressed
as -ye),..., ~n t- 2’, where each -yi is either an axiom, an additional assumption , or a
previously proved theorem.

The notion of formal system sketched thus far is purely syntactic, describing what
is generally referred to as an uninterpreted calculus or simply a calculus. The study
of the purely formal or syntactic properties of an uninterpreted calculus, including de-
ducibility, consistency, simple completeness, and independence, is called proof  theory.
The three notions of consistency, completeness, and independence are not equally impor-
tant. Consistency is of fundamental importance because it provides a minimal condition
of adequacy on any set of (nonintentionally self-contradictory) axioms. A formal sys-
tem is consistent if it is not possible to derive from its axioms both a statement and the
denial (negation) of that statement. The notion of completeness has many different in-
terpretations, all of which share the idea that a formal system is complete if it is possible

1 In this section, the terms sentence, statement, and well-fomed  fOmUhI are used bterchageably,
avoiding subtle distinctions sometimes made in the literature. In the context of fist-order logic, these
terms are synonymous with closed formula and denote a formula in which there are no bee (unbound)
variables.

2Assumptions are statements assumed to be true without proof. Axioms are assumptions whose
truth is assumed to be “self -evident,” emptilcally  discoverable or, in any case, stipulated for the sake
of argument, rather than proved using the given rules of inference. There are logical  and nonlogical
axioms. The latter deal with specific aspects of a domain, for example, Peano’s axioms (postulates)
which are interpreted with respect to a domain of numbers, whereas logical axioms deal with general
logical properties of the given calculus, for example, the axioms of propositional calculus.
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to derive within it all statements satisfying a given criterion. In general, completeness
has theoretical importance for logicians, but less importance for those working in formal
methods. It is quite difficult to establish completeness for systems of any complexity,
and many interesting and even importaut formal systems are provably incomplete. A
formal s<ystem S is said to be si7nply  complete if aud only if, for every closed, well-formed
formula, A, either A or 7A is a theorem of S, that is, A can either be proved or dis-
proved in S. Other terms for proof-theoretic notions of completeness include deductively
complete, syntactically complete, and complete with respect to negation.3  The notion of
independence refers to whether any of the axioms or rules of inference of a system are
superfluous, that is, can be derived from the remaining deductive system. Indepen-
dence is largely a matter of ‘(elegance.” Although economy is a desirable characteristic
of an axiom system, its absence does not necessarily impact the ultimate acceptability
or utility of the system.

A formal system, S, is decidable if there is an effective procedure (algorithm) for
determining whether or not any closed, well-formed formula, ~~, of S is a theorem of
S. Simple completeness can also be defined in terms of decidability. A formal system,
S, is simply complete if it is consistent and if every closed, well-formed formula in S is
decidable in S [Sho67,  p. 45]. A formal system, S, is semidecidable  if there is an algo-
rithm for recognizing the theorems of S. If given a theorem, the algorithm must halt
with a positive indication. If given a nontheorern,  the algorithm need not halt, but if it
does, it must give a negative indication. S is undecidable if it is neither decidable nor
semidecidable. The prc)positional  (statement) calculus is decidable. The predicate cal-
culus is semidecidable, although there are subsystems of first-order predicate logic, such
as monadic predicate logic (s~named  because ~Jredicates  can take only one argument),
that are decidable.

In the logical tradition, the distinction between syntax and semantics largely reflects
the distinction between formal systems and their interpretations, as studied by proof
theory and its semantic analog, model theory, respectively. An interpretation consists
of a (nonempty. abstract or concrete) domain of discourse and a mapping relative to
that domain that assigm a semantic value or meaning to each well-formed sentence
of the calculus. as well as to every well-formed constituent of such a sentence. For
example, an interpretation for a predicate calculus would assign a value to function and
predicate symbols. constants, and variables. The meaning or semantic value assigned
to a syntactically well-formed sentence of the predicate calculus would be a truth value,
either true or false, depending on the values assigned to its constituent parts. If the
description of a forma] system includes semantic rules that systematize an interpretation
for each syntactically well-formed constituent, the calculus is said to be interpreted.4
—

3Godel’s  proof that arithmetic is incomplete if consistent used a proof-theoretic notion of complete-
ness.

4Carnap [Car58, pp. 102-3] defines a calculus as “a language with syntactical rules of deduct ion,” an
interpreted language as ‘a language for which a sufficient system of semantical rules is given,” and an
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6.1.1.2 hflodel  T h e o r y

An interpretation is a model for a formal system if all the axioms of the formal system
are true in that interpretation. Sitnilarly,  an interpretation is a model for a theory or
for a set of sentences if it is a model for the formal system in which the theory or the
set of sentences are expressed and all the sentences in the given theory or the given set
of sentences also valuate to true in that model. If a theory has an axiomatic charac-
terization,  a model for the theory is necessarily a model for the axioms of the theory.
Most interesting theories have unintended (nonstandard) models, as well as intended
(standard) ones. For example, plane geometry is the standard model of the Euclidean
axioms, but not, as was believed before the discovery of the non-Euclidean geometries,
the only model. Similarly, the natural numbers are the standard or intended model
of the Peano axioms, although, again, not the only model [Kay91]. The fact that an
inconsistent system cannot have a model provides both a syntactic and semantic char-
acterization of consistency that can be usefully exploited. For example, it is typically
easier to demonstrate syntactically that a system is inconsistent, deriving a contradic-
tion from the axioms, than to use a meta-level  argument to prove that the system has
no models. Conversely, it is generally easier to demonstrate semantically that a sys-
tem is consistent by exhibiting a model, than to show the impossibility of deriving a
contradiction from the given axioms.

Model theory is the study of the interpretations of formal systems. Of particular
importance are the concepts of logical consequence, validity, completeness, and sound-
ness. Definitions of these notions reveal the rich interplay between proof theory and
model theory. Let 1 be a set of interpretations for a calculus and ~~ be a sentence of the
calculus. ~~ is satisfiable (under 1) if and only if at least one interpretation of 1 valuates
@ to true. ~~ is (universally) valid, written ~ @, if and only if every interpretation in 1
valuates ~ to true.5 If every model of a set of sentences, S, is also a model of a sentence,
@, then S is said to entail r), written S + ~~.

Let @ be a sentence and r be a set of sentences 41, ...,& of a formal system, S. S
is semantically complete with respect to a model Af (weakly semantically complete) if
all (well-formed) sentences of S that are true in M are theorems of S. A formal system,
S, is sound if r ~ @ whenever I’ 1- G, that is, if the rules of inference of S preserve
truth. Semantic completeness is the converse of soundness; soundness establishes that
every sentence provable in S is true in S relative to M, and (semantic) completeness
establishes that every sentence true in S relative to M is provable in S. Both the
propositional calculus and the predicate calculus are sound and complete.

— — .
interpreted calculus  as “a language for which both syntactical rules of deduction and semantic rules of
interpretation are given. ”

5Arguably,  for the purposes of formal methods, only those interpretations that make the theorems
of a formal system true, that is, only the models of the system are of interest. With this in mind, the
definitions of satisfiability and validity can be stated in terms of models rather than interpretations, as
done in [Rus93b,  p. 223].
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There is also a semantic characterization of independence. A given axiom, ~, of a
formal  system, S, is independent of the other axioms of S if the system, S’, that results
from deleting O has models that are not also models of (the whole system) S. Ideally,
the syntactic and semantic notions of independence are provably equivalent for a given
system S. As noted with respect to the proof- and model-theoretic charac~erizations
of consistency, a semantic argument may be easier in some cases and a syntactic one
in others. However, it is apparently still an open question as to lvhat properties a
system must possess to ensure that the syntactic and semantic
independence are equivalent.

6.1.1.3 An Example of a First-Order Theory

characterizatiolls of

Shoenfield’s classical axiom system for the natural numbers, N, provides a nice illustra-
tion of a class of formal system known as a first-order theory [Sho67, pp. 22,3]. In the
following definition, A, l?, and C are formulas and z and v are (syntactic) variables in
the given first-order language, f is an n-ary function symbol, and p is an n-ary predicate
symbol. A formal system, T, is defined as

● a first-order language

● the following logical axioms, as well as certain further nonlogical axioms

o

0

0

0

propositional axiom: 1A V A

substitution axiom: A=[a] –> 3zA

identity axiom: z = z

e q u a l i t y  a x i o m :  z] = yl + . . . + xn =yn + fzl. ..zn = fyi. ..gnor
X]=yl -+... -+’z7L= gn-+pzl. ..xn+ pyl...y~~

● the following rules of inference~

o expansion rule: infer B v A from A

o contraction rule: infer A from A V A

o associative rule: infer (A V B) V C from A V (1? V (7)

o cut rule: infer B V C’ from A V -?3 and -A V C

o 3-introduction rule: if z is not free in B, infer 3zA + B from A –~ B

The definition of T provides the logical apparatus necessary for specifying a (first-
order) theory. The only additions required are a specification of the theory’s nonlogical
symbols and its nonlogical axioms. For example, Shoenfield’s axiomatization of the
natural numbers is specified as a theory, N, with the following nonlogical symbols and
axioms [Sho67, p. 22].

6An occurrence of z in A is bound in A if it occurs in a part of A of the form 31B;  otherwise, it is
tree in A [Sho67, p. 16].



● nonlogical symbols: the constant 0, the unaty function symbol S (denoting the
successor function), the binary function symbols + and . , and the binary predicate
symbol <.

. nonlogical axioms

N1. Sz#O

hT2. Sz=Sy–+x=~

N3. z+O=X

N4. z+- Sy = S(Z: + y)

N5. x.0==0

N6. z. Sy=(Z.  y)+x

N7. -,(x < O)

N8. x< Sy~+x<y Vx=y

iN9. z<gvz=yvy<x

6.1.2 A Brief History of Automated Proof

The automation of mathematical reasoning coincides with the emergence of the field
of Artificial Intelligence (AI), whose early pioneers embarked on a program to (me-
chanically) simulate human problem solving. 7 By 1960, theorem provers for the full
first-order predicate calculus had been implemented by Paul Gilmore [Gi160] and by
Hao Wang [wan6~b, wan6(la]  in the United  States, and  by Dag Prawitz [PPV60] in
Sweden. Although this mechanization constituted an important proof of concept, the
practical utility of the theorem provers was limited, due to the combinatorial explo-
sion of the search s~)ace  encountered in proofs of anything other than relatively simple
theorems.

Following Shankar’s exposition [Sha94], it is useful to distinguish three approaches
in the subsequel~t  development of automatic theorem proving and proof checking: res-
olution theorem provers, nonresolution theorem provers, and proof checkers. This dis-
cussion focuses solely on developments in Europe and the United States. There is
also significant work in automated theorem proving in the region formerly known as
the USSR and in the People’s Republic of China. The Chinese have been particularly
active in the area of decision procedures for geometrical applications [BB89, p. 27].

The first eflicient  mechanization of proof grew out of work done by Alan Robinson
in the early 1960s and published in 1965 [Rob65]. Robinson combined procedures inde-
pendently suggested by Davis and Putnam and by Prawitz  to automate a significantly
more efficient proof procedure for the first-order predicate calculus known as resolution.

7hlacKenzie  [hIac95] and B15-sius  and Biirckert  [BB89]  provide interesting histories of post-Euclidean
dcwloprnents in automated reasoning.
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The key notion from
general substitution
lution is a complete
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Prawitz  was unification, an algorithm that gives the unique, most
that creates a complementary pair of literals  P and 7P. Reso-
refutation procedure for first order logic (see Section 6.1.3.1.3).

After its introduction in the mid 1960s, resolution was a focal point for activity in au-
tomated theorem proving, yielding numerous extensions and optimization. By 1978,
Loveland’s textbook on automated theorem proving documented some 25 variants of
resolution [Mac95,  p. 14]. Despite this considerable activity and a steady increase in
computing power, the early resolution theorem provers suffered from the same limi-
tation that had plagued the previous generation of mechanical proof procedures: the
combinatorial explosion of the proof search space.

The 1970s also witnessed the emergence of logic programming, originally attributed
to Kowalski and Colmerauer  [Kow88].  Colmerauer  and his colleagues implemented a
specialized resolution theorem prover called Prolog (abbreviating the French “Progran~-
mation en Logique” ) that implemented Kowalski’s procedural interpretation of Horn
clause logic$. The result was a theorem proving system that could be used as a pro-
gramming language [SS86].

Despite a decline in the 1970s due largely tc) disappointing performance, research
in resolution theorem proving continued. Although unification remained the crucial
algorithm, resolution provers added sophisticated heuristics, data structures, and opti-
mization to manage combinatorial explosion. The result has been increasingly efficient,
powerful systems. In the 1970s and early 1980s, research in resolution theorem prov-
ing existed primarily at Argonne National Laboratory, where Robinson had originally
been introduced to automatic theorem proving. Argonne’s Aura (Automated Reasoning
Assistant) and, more recently, Otter [WOLB92]  systems have successfully proven not
only known theorems, but also open conjectures in several fields of mathematics. In
addition to Otter, current state-of-the-art resolution provers include SETHEO [LS1392]
and PTTP [Sti86]. Paulson characterizes Otter, SETHEO, and PTTP as “automatic
theorem proving at its highest point of refinement” [Pau97] and notes their extremely
high inference rates, their efficient use of storage, and their ability to prove many of the
toughest benchmark problems.

Resolution methods yield proofs that are not readily understood by humans. This
perceived weakness, as well as the difficulty of combining resolution with nonlogical
inference techniques such as induction, led researchers to pursue other approaches, in-
cluding various levels of human interaction and a renewed interest in heuristics. In the
1970s, Wood y Bledsoe and his colleagues at the University of Texas began work in “non-
resolution theorem-prcwing,” pursuing proof procedures that yielded more natural and
powerful proofs for mathematical theorems, as well as heuristics (like those of the early
AI pioneers) that produced human-like proofs. Although Bledsoe initially developed an
automated prover for set theory that combined both resolution and heuristics, he later
replaced resolution with a more “natural” procedure, augmented with a ‘(litnit heuris-
tic” for calculus proofs, algebraic simplification, and linear inequality routines. The
—

8A clause is Horn if it has at most one positive literal, for example, -1P(z)  V -@(x) V R(z).
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resulting prover successfully proved theorems in elementary calculus that had stymied
existing resolution-sty]e  provers [Mac95].

Robert Boyer  and J Strother Moore have collaborated on several influential theorem
provers that use heuristics to develop proofs by induction and rewriting. The hlqthm
series of provers [13M79,  BN488], and its successor ACL2 [KM94, KM96], are highly auto-
mated, but, require user guidance to accomplish difhcult proofs. In the hands of skilled
practitioners, the Boyer-Moore  prover has been used to prove program and hardware
correct ness [BHM}’89,  Hun87], as well as mathematical theorems, including tile auto-
mated proof of Godel’s incompleteness theorem undertaken by Shankar for his doctoral
dissertation [Sha94].

Other productive approaches to automatic theorem proving have included condi-
tional rewriting as found in the Rewrite Rule Laboratory (RRL) system [KZ89]  and
matings as used by Andrews and his colleagues to develop a theorem prover for higher-
order logic [AMCP84].

The distinction between theorem provers and proof checkers is tenuous, typically
reflecting the intended use of the system or the degree of automation relative to other
systems, rather than hard and fast differences .9 Nevertheless, certain systems are more
consistently identified as proof checkers. Automath, developed by de Bruijn and his
colleagues at the Technische Hogeschool in Eindhoven, The Netherlands, was one of
the earliest and most influential proof checkers, originating ideas subsequently used by
several modern languages and inference systems [Sha94,  p. 19]. Automat h provided a
grammar whose rules encoded mathematics in a way that allowed mechanized checks of
correct ness for Automath statements, as illustrated in [vBJ 79].

The LCF (Logic for Computable Functions) system is another influential proof
checker. In LCF, axioms are primitive theorems, inference rules are functions from
theorems to theorems, and typecheckin,g  guarantees that theorems are constructed only
by axioms and rules [Pau91, p. 11]. There are higher-order functions known as tactics
and control structures known as tacticals (see Section 6.1.3.3), yielding a programmable
system in which the user determines the desired level of automation. LCF has been
used to verify program properties [GMW79] and to check the correctness of a unifica-
tion algorithm [Pau84].  Several well-known systems have evolved from LCF, including
HOL, hTuprl,  and Isabelle.  HOL (Higher-Order Logic) is a widely used system with
extensive libraries that is employed primarily for verification of hardware and real-time
systems. Nuprl is based on constructive type theory and was developed at Cornell Uni-
versity by Joseph Bates and Robert Constable as a mechanization of Bishop’s program
of constructively reconstruct ing mathemat ics [Sha94,  p. 19]. The Nuprl system has been
used primarily as a research and teaching tool in the areas of constructive mathematics,
hardware verification, software engineering, and computer algebra. Isabelle is a generic,
interactive theorem prover based on the typed lambda calculus, whose primary infer-
ence rule is a generalization of Horn-clause resolution. Isabelle  supports proof in any

‘For  example, Shankar  variously identifies both iYqthm [Sha94] and PVS  [SOR93] as theorem provers
and proof checkers.
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logic  wl~oseitlferel~ce  rules callbeexpressed  as Horl]clauses  [Pau97].  Isabelle  represents
a synthesis between two largely distinct traditions in automated reasoning: resolution
theorem proving and interactive theorem provin.g.

6 .1 .3  Techniques  Under ly ing  Automated  Reasoning

The preceding discussion identified major proving traditions including resolution, equa-
tional or rewrite systems, constructive type theory methods, Boyer-Moore-style  systems,
and a variety of other methods loosely characterizable as interactive. The resulting sys-
tems can be classified in various ways, including the interelated dimensions suggested by
Gordon [Gor]: type of logic supported, extensibility, degree of automation, and close-
ness to underlying logic. Generic theorem provers can be configured for a variety of ‘
logics  while specialized theorem provers exploit a particular application-oriented logic
(for example, temporal logic model checkers) or contain features optimized for selected
applications. There are several variations on extensibility; a theorem prover may not
be extensible, or it may offer a metalogic (allowing the user to program the underlying
logic), an extendab]e infrastructure (allowing the user to program sequences of proof
steps), a reflective capability (allowing the prover to reason about its own soundness
and thereby the soundness of proposed extensions), or a customizable syntax (ranging
from alternative notations to parser support). In general, specialized systems such as
model checkers are more automatic than general-purpose provers, all of which use some
degree of automation. Degree of automation is also influenced by the closeness of proof
to the underlying logic. Systems in which theorem proving differs little  from the process
of fornlal proof in the underlying logic tend to be more automated than those in which
the difference is greater.

6.1.3.1 Calculi for First-Order Predicate Logic

In principle, inference rules may be used in one of two ways [BB89].  Starting from the
logical axioms,  inference rules may be applied until the formula to be proven (valid or
unsatisfiable, depending on whether the calculus is positive or negative, respectively) is
derived. This approach is called a deductive  calculus. Alternatively, starting from the
formula whose validity or unsatisfiability is to be shown, inference rules may be applied
until logical axioms are derived. This second approach is termed a test calculus. The
relationship between deductive and test calculi is analogous to that between forward and
backward chaining state transition systems. As these remarks suggest, there is a variety
of different calculi for first-order predicate logic, each offering a different perspective on
the nature of validity [EIE93].  The Gentzen ‘calculus, including the variant known as the
sequent calculus, is a positive deductive calculus, whereas Robinson’s resolution calculus
is a negative test calculus. These two calculi are introduced following a brief discussion
of normal forms for predicate logic formulas. A survey of logical calculi may be found
in [BE93].
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6.1.3.1.1 Normal Forms

hTormal  forms are standardized formats intended to make predicate logic formulas
easier to understand and manipulate. ‘This section considers two such forms: prerwz
normal form  and skolem normal form. Valid formulas of the form A +> B, including
important (tautological)  equivalences such as the laws of quantifier distribution and
the laws of quantifier movement, may be used (in conjuct  ion with a variable renaming
rule to avoid unintentional variable binding) as value-preserving transformations. These
transformation rules yield a logically equivalent prenex  form in which all quantifiers oc-
cur on the left, in front oft he quantifier-free matrix [BB89]. Skolemizationl  named after
the Norwegian mathematician Thoralf  Skolem, yields a normal form that is particularly
useful because it explicitly represents quantificational  dependencies of assignments to
variables. Following an explanation in [BB89], a formula Vxl, . . . . Zn ~g~ in prenex form
may be transformed into VZ1, . . ., ~~1>”, where 7“ is obtained from 7 by replacing each
free occurrence of y with a Skolem function, fv,  of the form fv(zl,. . . . Zn). The process
of skolemization is not model-preserving, that is, a formula and its skolernized  form are
not equivalent. However, a formula is satisfiable (unsatisfiable) j ust in case its sko~em-
ized form is. Since only universal quantifiers remain after skolcmization, the quantifiers
are often implicitly assumed, yielding formulas of the form 7’.

There are various skolemization strategies. The method described here begins with
a formula in prenex  form, but it is also possible to skolemize a formula that is not in
prenex form by keeping track of the essential “parity” of the quantifier. Parity refers
to the number of negations in whose scope the quantifier occurs. Almost all mechanical
theorem provers use some form of skolemization.

6.1.3.1.2 The Sequent Calculus

The sequent calculus is a variant of the deductive calculus developed for his disserta-
tion by the German logician Gerhard Gentzen [Gen70].  Gent zen was interested in using
syntactic inference rules to model mathematical reasoning, and he defined the sequent
calculus to make the assumptions on which a formula depended more transparent. This
transparency yields a calculus that is particularly suited to computer-assisted proof be-
cause the information relevant to a given part of the proof is localized. Two additional
advantages attributed to the sequent calculus include the intuitively plausible nature of
its inference rules and their symmetric construction, yielding relatively systematic and
natural proof construction.

A sequent is written r 1 A, meaning Ar 3 VA, where r is a (possibly empty) list
of formulas {A l, . . ., Am} and A is a (possibly empty) list of formulas {Bl,.

.. , IIn}.  In
a sequent r F A, the formulas in I’ are called the antecedents and the formulas in A
are called the succedents  or conseguents.  Intuitively, the conjunction of the antecedents
should imply the disjunction of the succedents,  that is, Al A . . . A Am 2 B1 V . . . V Bn.
A sequent calculus proof can be viewed as a tree of sequents whose root is a sequent of
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the form F A, where A is the formula to be proved and the antecedent of the sequent is
empty. The proof tree is generated by applying inference rules of the form

r]EAl  ““. rnh AnN— . .
I’}A

Intuitively, the rule natned N takes a leaf node of a proof tree of the form 17 h A
and adds the n new leaves specified in the rule. If n is zero, that branch of the proof
tree terminates.

The propositional inference rules consist of the Propositional Azzom and rules for
conjunction (A), disjunction (V), implication (2), and negation (n). The Propositional
Axiom rule applies when the same formula appears in both the antecedent and succe-
dent, corresponding to the tautology (I’ AA) > (A V A), where 17 and A consist of the
conjunction and disjunction, respectively, of their elements.

Ax
r, AFA, A

There are two rules for each of the propositional connective and for negation, cor-
responding to the antecedent and consequent occurrences of these connective. The
negation rules simply state that the appearance of a formula in the antecedent is equiv-
alent to the appearance of its negated form in the succedent,  and vice versa.

rEA, A r,A}A
F,lAI-AIE rFIA, AE  -

The inference rules --I I and t- m are often referred to as the rules for “negation on the
left” and “negation on the right,” respectively. Negation on the left rule can be derived
as follows. Using the identity (X > Y) E (-TX V Y), the antecedent can be written
=r v (A v A), which is equivalent to (117 V A) V A, and to =(-W V A) D A. Invoking
one of De Morgan’s Laws (~(X V Y) = (1X A =Y)),  1(47 V f!) > A is equivalent to
(I’ A 7A) > A, which is an interpretation of the succedent.

The same symmetric formulation and naming conventions are used for the other
rules, including those for the binary connective. The rule for conjunction on the left
is a consequence of the fact that the antecedents of a sequent are implicitly conjoined;
the rule for conjunction on the right causes the proof tree to divide into two branches,
requiring a separate case for each of the two conjuncts.

A,l?, rEA Ah I’t A,A rkB, A

AA B, I’ t-A
F- A

I’!-A/IB, A

The rules for disjunction are duals of those for conjunction.
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A, I’PA B,r}QvF.
AVB, I’ t-A

‘E A’B’AEV
I’I-AVB, A

The rule for implication on the right is a consequence of the implication ‘(built in”
to the interpretation of a sequent. The rule for implication on the left  splits the proof
into two branches analogous to the two cases encountered with the rules for conjunction
on the right and disjunction on the left. NTote  that one case of the implication on the
left rule requires the antecedent to the implication be proved and the other case allows
the consequent of the implication to be assumed.

171-A,  A b’, rEA—— 3t- “AFB’A t-3
A> E’,l’ I-A 17 EA>B, A

To illustrate propositional reasoning in the sequent calculus, consider the following
proof of

(P> QnR)>(PAQ>R).

reproduced from [Rus93b, pp. 231-233]. The implies symbol > associates to the right,
and binds less tightly than A. This formula is actually an instance of the law of expor-
tation.

The first step is to contruct the goal sequent

and then seek an applicable inferenw rule. There is only one choice in this case: the
rule for implication on the right (with [A +– (1’ > Q > R), B + (F’ A Q 1) R)] and I’
and A empty).

(P> QoR)E(J’AQ>R)  ~=

_F(P3Q3~)3(PAQ3~)

Considering the sequent above the line

there are two choices for the next step: implication on the left or implication on the
right. Implication on the left will cause the proof tree to branch. Since it is usually best
to delay branching as long as possible, implication on the right is the best option (this
time with [r e (P ~> Q > R), A + F’ A Q, B + R] and A empty)

(P> Q> R), (P AQ)I-R

(P>Q>li?)E(PAQOR)~=

Focusing once again on the sequent above the line

(P> Q> R), (P AQ)FR
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there are two options: implication on the left or conjunction on the left. As in the last
step, the strategy of delaying branching as long as possible narrows the choice. Applying
conjunction on the left yields

(P> Q> R), P,QER

(p3Q>R),  (1’ AQ) &RAF

NTOW  the sequent above the line is

and the only choice is to use the rule for implication on the left

The right branch can be closed immediatelyl”

— Ax
P, QFP, R

‘The left branch requires another application of the rule for implication on the left:

R, P,Qt R P, QI-Q, R

(QoR),p,Q~R  ‘t

The left and right branches can then be closed:

——— Ax
R, P,Qh R

Ax
P, QkQ, R

Since all the branches are closed, the theorem is proved.
The preceding steps can be collected into the following “proof tree” representation:

— Az Ax
R, P,QFR F, QFQ, R

>t — Ax
(Q DR), p,Q~R P, QI-P, R

_——.
(P> Q> R), P, Qt-R

— — - -  >}

~PDQ3~),(pAQ)FftAFF3

‘(P> Q> R) F(PAQ>R) ~=

‘- R(P>Q>R)>(PAQ>R)
— ——

1°Strictly  speaking, it is first necessary to use an Exchange rule to reorder the formulas in the an-
tecedent, and similarly for closure of the left branch, below. The Exchange rules are introduced at the
end of this section.
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First-order sequent calculus extends the propositional sequent calculus presented
above with inference rules for universal and existential quantification and with an in-
ference rule for nonlogical axioms. 11 In the statement of the quantifier rules, a is a new
constant (that is, a constant that does not occur in the consequent of the sequent) and
t is a term.

I’, A[x-a]FA3F rRA[zwt],  AE3—.————
I’, (3z: A) F A TR (3z:A),  A

The quantifier rules are the sequent calculus analog of skolemization (cf. Sec-
t ion 6.1.3.1.1). The basic idea is that to prove a universally quantified formula, it
is sufficient to show that the formula holds for an arbitrary constant (a), and to prove
an existentially quantified formula, it is only necessary to show that the formula holds
for a given term (t). The four quantifier rules reflect the underlying duality between
universal and existential quantification.

The rule for nonlogical axioms is used to terminate a branch of the proof tree when
a nonlogical axiom or previously proved lemma appears in the consequent of a sequent.

.—— — Nonlog-az
I’t-A,  A

~,here A is a nonlogical axiom or previously proved lemma

For convenience in developing proofs, it is useful to provide an additio~ial  rule called
“cut” as a mechanism for introducing a case-split or lemma into the proof of a sequent
17 E A to yield the subgoals I’, A 1- A and I’ t- A, A . The subgoals are equivalent
to assuming A along one branch and having to prove it on the other. Alternatively,
applying the rule for negation on the right, the subgoals are equivalent to assuming A
along one branch and -A along the other.

A, I’ t-A I’I-A, A-—— ———.——
rFA

—-  cut

The Cut rule can be omitted; a well-known result in proof theory, the Cut Elimin-
ation Theorem (also known as Gentzen’s Hauptsatz), establishes that any derivation
involving the cut rule can be converted to another (possibly much long;er  proof) that
————.. —

11 Technical]~, it is also ~onk,enient  to ~lodify  the propositional aXiOIn  to alh’ not onlY ‘or the case

where the formula in the antecedent is the same as that in the consequent, but also for the case of two
syntactically equivalent formulas, that is, formulas  that are the same modulo  the renaming of bound
variables.
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does not use cut. Since cut is the only rule in which a formula (A) appears above the
line that does not also appear below it, it is the only rule whose use requires “inven-
tion’> or “insight”; thus, the cut elimination theorem provides the foundaticm  for another
demonstration of the semi-dccidability  of the predicate calculus [Rus93b,  p. 244].

Finally,  there  are four structural rules that simply allow the sequent to be rearranged
or weakened. These rules have the same status as the Cut rule; they can also be omitted.
The Exchange rules allow formulas in the antecedent and consequent to be reordered.

rl, B, A,r2}Ax E rEAl,  B, A, A2Fx—.
1’11 A, B, rz F A rI-A1,  A,l?, A2

The Contraction rules allow multiple occurrences of the same sequent formula to be
replaced by a single occurrence.’2

6.1.3.1.3 The Resolution Calculus

The resolution calculus is a negative test calculus for formulas in clausal forn~13;  it
contains a single logical axiom and uses only one rule of inference, the resolution rule.
The single axiom is an elementary contradiction denoted by the empty clause (D). In
its simplest form, the resolution rule may be viewed as a special instance of the cut rule
(of the sequent calculus) in which all single formulas are Iiterals [BB89, p. 56]. Using
notation from [131389], the resolution rule is defined as follows.

clausel: L , Kl,... ,Kn
clause2:  TL, M1,. ... M~,
resolvent:  K1,. . . .  Kn Ml,... ,M~

~rhere clauses  ] and 2 are referred  to as the parent  clauses of the resolvent  and L a n d
-IL are the resolution literals.

A generalization of this rule allows an instantiation of the formulas in terms of
a substitution that maps variables to terms uniformly across both resolution literals.
Using the same notation, the general resolution rule is expressed as shown below, where
u represents a substitution that makes the atoms L and L’ equal, that is, UL = crL’.

clausel: L , Kl,... ,Kn
clause2: TL’, M1,...  ,Mm
rcsolvent~  oK], . . . ,oK,, OMl,, ... uMn

—
12 The  structural rules (Contraction and Exchange) are sometimes formulated in terms of a single

weakening rule.
Is’That  is a disjunction of literals,  w,here a literal is a proposition or a negateCl proposition. Q u a n -

tifiers are n~t  permitted. Universal quantifiers are implicit, and existential quantifiers are replaced by
Skolem functions as described in Section 6.1.3.1.1. For example, in clausal form, VX3V12(Z,  y) becomes
R(Z, f(z)).
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If a substitution, o exists for two expressions, the expressions are said to be unifiable and
the substitution is called a unifier  for the two expressions. Given a pair cjf expressions,
there are distinguished unifiers, known as the most generui unifiers  from which all other
unifiers may be derived by instantiation.

The following examples are taken from [BB89].  The terms z and j(g) are unifiable.
The substitution {x e ~(y),  y ~- a} is a unifier for x and f(y), although it is not a
most general one, since it can be obtained from the most general  unifier {z ~ .f (Y)} W
further instantiating y with a. There are two equivalent most general unifiers for the
pair of terms ~(x, g(x)) and ~(y, g(y)): {z ~ y} and {y - x}, which differ only with
respect to variable names. The terms x and ~(x) are not unifiable. Neither are the
terms g(x)  and ~(~).

Resolution is a complete refutation procedure for first-order logic. If a sentence is
false under all interpretations over all domain-- that is, unsatisfiable, then resolution
will terminate with the empty clause indicating a contradiction has been derived. If
the negation is unsatisfiable, the original theorem is true. If the origirlal  theorem is
not true, resolution may not terminate. The proof of the completeness of resolution
is based on a result from Jacques Herbrand’s 1930 dissertation. Rough] y, Herbrand’s
theorem states that in proving a set of clauses, S, unsatisfiable, the only substitutions
that need to be tried are those drawn from the set, H, of all variable-free terms formed
from the functions (inclucling  constant functions) occurring in S. The set, H, is known
as the Herbrand  Universe of S. Since H is always either finite or counts.bly infinite, a
contradiction, if one exists, will always be found [CL73].

Resolution theorem provers can be highly effective in some domains. In general,
they have not been used in formal methods because it has been difficult to combine res-
olution with induction and with the additional first-order theories necessary for formal
methods applications. Furthermore, resolution methods do not readily support proof
exploration and typically yield proofs that are not easily understood by humans. Nev-
ertheless, fundamental techniques from resolution-based provers, such as highly efficient
uuificatiou algorithms, have been incorporated in most modern theorem provers.

6.1.3.2 Extending the Predicate Calculus

The predicate calculus is not sufficient for most applications of formal methods, which
typically require the addition of first-order theories such as equality, arithmetic, simple
computer science datatypes (lists, trees, arrays, and so forth), and set theory. These
four theories are basic to most applications. Particular applications may benefit (sig-
nificantly) from the inclusion of additional first-order theories. Formal methods also
require support for induction. In general, methods for automating inductive proofs are
less well-developed, and user guidance is typically required for such proofs. A discussion
of the current status of automated induction and the role of induction in formal meth-
ods appears in [Rus96]. The discussion includes an interesting fragment drawn from a
specification of Byzantine fault-tolerant clock synchronization.
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The next three sections sumtnarize some of the issues involved in developing first-
order theories for equality and arithmetic, and introduce the topic of combinations of
theories.

6.1.3.2.1 Reasoning about Equality

The fundamental notion of equality is that if x and y are equal, then z and g have
all properties in common, that is, z = y if and only if, z has every property that y
has and, conversely, y has every property that x has. This idea was first formulated by
I,eibniz  and is also referred to as “Leibniz’s Law” [Tar76,  p. 55]. Equality is reflexive,
symmetric, and transitive and is therefore an equivalence relation. However, equality
also satisfies the property of substitutivity  (that is, equals may always be substituted
for equals) and is thereby distinguished from mere equivalence relations.

A model for a first-order theory with equality that interprets ‘(=” as the identity
relation on the domain of interpretation is referred to as a normal model. Since it is
possible to show that a first-order system with equality has a model if and only if it
has a normal model, nothing is lost by restricting the focus to a normal model. An
initial  lnodel  is one without “confusion” or “junk, ” where confusion and junk may be
informally defined as the ability to assign elements to terms in a way that simultaneously
preserves as distinct those terms not required to be equal by the axioms (no confusion)
an’d leaves no element unassigned (no junk).

The sequent calculus rules for equality directly encode the axiom for reflexivity
(that states that everything equals itself) and Leibniz’s  rule. The rules of transitivity
and synnnetry for equality can be derived from these rules. The notation A[e] denotes
occurrences of e in A in which no free occurrences of variables of e appear bound in A[e]
and, similarly, for A[C]. ntathbf  Ref/  additionally requires that a and b be syntactically
equivalent, that is. a :: b,

Reasoning about equality is so basic that most theorem provers use very efficient
methods to handle the chains of equality reasoning that invariably arise in automated
theorem proving. Examples include efficient algorithms for computing the congruence
closure relation ml the graph representing the terms in a ground formulal 4 [Sho78b,
DST80, N{)79].

Equations alsc) commonly arise in the form of definitions, such as that for the absolute
value functionl~:

Irl = if x <0 then -- x else x.

14A ground formula is OIle in which there are no occurrences of free variables
15This and the following example are reproduced from [Itus93b].
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One way to prove a theorem such as la +- bl < Iul + Ibl is to expand the definitions
and then perform propositional and arithmetic reasoning. “13xpanding a definition”
involves finding a substitution for the left side of the definition that causes it to match
a term in the formula (for example, [x e a + b] will match lx I with la -k bl ), and then
replacing that term by the corresponding substitution instance of the right side of the
given definitiol~--  for example,

la+ bl=ifa-tb<O  then -(a+ b)elsea+h

Expanding definitions is a special case of the more general technique of rewriting. “The
basic idea is to impose directionality on the use of equations in proofs; . . . directed
equations are used to compute by repeatedly replacing subterms  of a given formula
with equal terms until the simplest form possible is obtained.” [DJ90] The notion of
directed equation refers to the fact that although equations are symmetric--a = b
means the same thing as b = a–- rewriting imposes a left-to-right orientation, hence
equations viewed with this orientation are generally called rewrite rules. Rewriting
may be used with arbitrary equations provided the free variables appearing on the

right side of each equation are a subset of those appearing on its left. The process of
identifying substitutions for the free variables in the left side of the formula of interest
as a prerequisite to rewriting is called matching. Matching is sometimes referred to as
‘(one way” unification; although the process is essentially the same, only substitutions
for the variables in the equation being matched are of interest.

Rewriting may be automated or performed by the user. Two desirable properties
of rewrite rules are jinite  termination and unique termination, also knou’n as Church-
Rosser.  A set of rewrite rules has the finite termination property if rewriting always
terminates. A set of rewrite rules is Church-Rosser if the final result after rewriting
to termination is independent of the order in which the rules are applied. There are
effective heuristic procedures for testing for the finite and unique termination properties,
including Knuth-Bendix  completion [KB70, DJ90],  which can often be used to extend
a set of rewrite rules that is not Church-Rosser into one that is. A theory that can be
specified by a set of rewrite rules with both the finite and unique termination properties
may be used as a decision procedure for that theory. Moreover, any such decision
procedure is sound and, for ground formulas, complete, However, deducing disequalities
is sound and complete only for the initial model. Therefore, systems that use rewriting
to normal form as their primary or only means of deduction typically use an initial
model semantics, whereas systems that use rewriting in conduction with other methods
typically use a classical semantics and (only) infer disequalities  axiomatically.

There are several variations on rewriting, including order-sorted rewriting, condi-
tional rewriting, priority rewriting, and graph rewriting. A description of these variants
appears in the comprehensive survey of rewrite systems provided in [DJ90].

Term rewriting is highly effective, and essential to the productive use of theorem
proving for formal methods applications. It serves as the primary means of deduction
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in Afhrm [GM’I’+ 80, Mus80], Larch [wSJGJMW93], and RRL [KZ89] and is one of the
most important techniques in the Boyer-Moore  provers [BM88, Kh!196]. Rewriting may
also be used for computation [GKK+  88]. The paramodulat  ion techniques [RW69] used
in resolution are similar to rewriting.

6.1.3.2.2 Reasoning about Arithmetic

Formal methods applications typically involve arithmetic expressions and relations
o~,er  both real atld Ilatural  numbers, and both interpreted and uninterpreted function

symbols. The ubiquity and often the complexity of this arithmetic make efficient deduc-
tive support for arithmetic essential to the productive use of formal methods [Rus96].
Integer arithmetic is sutliciently  important that some formal methods systems include
decision procedures for the quantified theory of integer arithmetic, often referred to
as Presburger arithmetic after the Polish mathematician who first studied these arith-
metics in the late 1920s. The decidable fragment essentially includes linear arithmetics
with addition, subtract ion, mult iplicat ion, equality, the “less than” predicate (<), and,
by simple constructions, the predicates >, s, ~. Classic Presburger arithmetic, which
contains neither function symbols nor anything other than simple constants, is decid-
able. However, given the importance of function symbols and the fact that they may be
introduced into formulas in which they do not originally appear through the process of
skolernization,  it is easy to appreciate the tension between efficiency (decidability)  and
expressiveness. Tools for formal methods often opt to restrict the arithmetic decision
procedures to the ground (that is, propositional) case, where the combination of linear
arithmetic wit h uninterpreted function symbols is decidable [CLS96].

6.1.3.2.3 Combining First-Order Theories

One of the challenges in designing a truly useful theorem prover or proof checker is
combining decidable theories both with one another and with user interaction. There
are algorithms dating back to the late 1970s for combining decision procedures, includ-
ing Nelson- Oppen [N079]  and Shostak  [Sho78b,  CL S96]. The Nelson- Oppen  algorithm
combines decision procedures for two disjoint ground theories (for example, linear arith-
metic and lists) by “introducing variables to name subterms and iteratively propagating
any deduced equalities between variables from one theory to another” [CLS96]. Shostak
combines theories that are canonizable (that is, can be converted to a canonical or nor-
mal form) and algebraically solvable using an optimized implementation of the congru-
ence closure algorithm for ground equality over uninterpreted function symbols [CLS96].
Since Shostak’s approach appears to be very efficient, but is restricted to algebraically
solvable theories, there is some interest in combining it with Nelson-Oppen.

Most automated theorem provers and proof checkers minimally contain inlplementa-
tions of decision theories for propositional logic, equality, and linear arithmetic. Cyrluk
et al. note that the method used to combine decision procedures is more critical to
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the overall efficiency of the system than the efficiency of any single decision proce-
dure (CLS96].  Therefore, it is important that new decision procedures, such as those
that arise in response to needs identified in formal methods applications,
in combination with other theories.

6.1.3.3 Mechanization of Proof in the Sequent Calculus

wcmk effectively

‘This section illustrates how the proof of (P > Q ~ R) ~ (F A Q > R) from Sec-
t ion 6.1.3.1.2 might proceed with the help of an interact ive theorem prover built on the
sequent calculus style of reasoning. The presentation asssumes  that the formula has been
introduced to the toolset and given the name “theorem_l  .“ Invoking a proof attempt on
this theorem places the user at the theorem prover’s interactive interface. Intermediate
scquents  developed during the course of the proof are displayed, allowing the user to
guide the proof at each step.

Beginning proof of “theorem_l” :

Antecedents:
None

_——--. ——----. — >
Consequent:

Formula 1: (P => (Q => R)) => ((P & Q) => R)

‘The imaginary prover used in this example displays sequents in the format shown above.
Actual provers use similar formats, although they are usually less verbose.

The theorem prover’s interaction style is based on the user’s entry of a command to
invoke a proof step, and the prover’s display of the results of that command. Application
of inference rules is the main type of command, with various supporting utility functions,
such as proof status and proof display commands, provided as well.

Step 1: apply-rule “implies-right”

Applying rule “ impl ies -r ight” to the current sequent yields:

Antecedents:
Formula 1: P => (Q => R)

=====  .= >
Consequent:

Formula 1: (P& Q)=>R

The user would type the command after the ‘(Step 1:” prompt shown
case, the inference rule causes a new sequent to be generated, as shown.

above. In this
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Step 2: apply-rule “implies-right”

Applying rule “ impl ies -r ight” to the current sequent yields:

Antecedents:
Formula 1: P => (Q => R)
Formula 2: P&Q

=====  == >
Consequent:

Formula 1: R

A second applicationofthe  “implies-right” rule creates multiple antecedents. De-
pendingon  the formulas involved, this might mean future commands could apply to ‘
more than one formula. The prover would have to pick one by default or require the
user to specify the formula.

Step 3: apply-rule “and-left”

Applying rule “and-left” to the current sequent yields:

Antecedents:
Formula 1: P => (Q => R)
Formula 2: P
Formula 3: Q

=====  == >
Consequent:

Formula 1: R

At this point, the proof has progressed without branching, but case splitting will
now be required. The next rule application causes branching inthe proof tree, for which
the prover supplies suitable node numbers tokeep trackof current and future locations.

Step 4: apply-rule “ impl ies - le f t ”

Applying rule llimPlles-leftl!  to the  current sequent produces

two cases, the f irst of  which, case 4.1,  is a s  f o l l o w s :

Antecedents:
Formula 1: Q = > R
Formula 2: P
Formula 3: Q

—------—---_—— >
Consequent:

Formula 1: R
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Only cme branch can be ?mrsued  at a time. The prover will automatically return to the
second branch after the current one is completed.

Case 4.1, step 1: apply-rule “implies-left”

Applying rule “implies-left” to the current sequent produces
two cases, the first of  which, case 4.1.1,  is as follows:

Antecedents:
Formula 1: R
Formula 2: P
Formula 3: Q

_——----- - - - - - ->
Consequent:

Formula 1: R

Asecond  application ofthc same rule causes further case splitting. Systenlaticnaviga-
tionof the proof tree helps theuscr  keep his or her bearings.

The current branch can be terminated by applying the Propositional Axiom that
acknowledges when the sequent is a tautology. Normally, a user need not explicitly
invoke this rule; most provers will recognize such opportunities and apply the rule
automatically.

Case 4.1.1, step 1: apply-rule “prop-axiom”

Applying rule “prop-axiom” to the current sequent
proof of  case 4.1.1.

Resuming with  case 4.1.2:

Antecedents:
Formula 1: P
Formula 2: Q

=====  .= >
Consequent:

Formula 1: Q
Formula 2: R

9

I
D

B
9
I
B
8

I
completes the

9

9

B

After dispensing with one branch ofcase4.1,  the prover presents theuser with the other
branch, and the “prop-axiom” rule applies again.
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Case 4.1.2, step 1: apply-rule “prop-axiom”

Applying rule “prop-axiom” to the current sequent completes the
proof of  case 4.1.2. This also completes the proof of case 4.1.

Resuming with  case 4.2:

Antecedents:
Formula 1: P
Formula 2: Q

=====  .=>
Consequent:

Formula 1: P
Formula 2: R

After finishing allofcase  4.1, theprover  pops back uptocase  4.2 to finish off the
only remaining branch  c)fthe proof.

Case 4.2, step 1: apply-rule “prop-axiom”

Applying rule “prop-axiom” to the current sequent completes the
proof of case 4.2. This also completes the proof of “theorem_l”.

Q.E.D.

Recognizing that all branches ofthc tree have resulted invalid proofs, the prover an-
nounces the successful completionofthe  overall proof.

Although this example has been cast in terrnsof  a fictitious theorem prover, many
actual provers follow a similar style of interaction. Level of automation, and therefore
the nature of the interaction, varies considerably from one prover to another. For
exarnplc,t  helevel  ofautomation may makeit unnecessaryto  invoke rulesat  the levelof
detail presented here. Although the prover typically builds the full proof tree, the user
generally sees only those portions of the tree requiring user guidance. ‘l?rivialcasesare
typically not displayed, although there may bea facility for revisiting both the implicit
and explicit steps ofa proof. On first attempt, most putative theorems attempted are
incorrect, that is, they are not in fact theorems. Therefore it isat least as important
that an automate ddeductionsystem  facilitate the discovery oferror,  as that it should
efficiently prove true theorems.

In addition to mechanizing routine manipulations, automated deduction systems
should reduce the low-level interaction and repetitive tedium involved in large proofs.
To this end, many interactive provers provide higher-order functions known as tactics
and control structures known as tacticals  that allow simple tactics to be combined into
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more complex ones. Paulson [Pau92,  p. 456] notes that ideally tactics should capture the
control structures typically used in describing proofs. He also remarks that, in practice,
tactics often do not work at the level of proof description, but rather at a somewhat
lower level. Nevertheless, tacticals potentially allow the user to perform hundreds of
inferences with a single command. The concept and implementation of tactics and
tacticals varies from prover to prover, but all share the idea that a theorem prover
should be programmable. The challenge in using any automated reasoning system is to
learn to use the automation effectively by exploiting the system’s strengths and realizing
its limitations.

Given the number and diversity of automated reasoning systems, the question invari-
ably arises as to which system is most appropriate for a given application. Young [You95]
suggests the use of benchmark problems to facilitate comparison of system performance .
within specific areas. Although standard benchmarks have yet to be identified, there
are problems, such as the railroad gate controller in the area of safety-critical systems,
that have been attempted on a variety of systems.

6.1.4 Utility of Automated Deduction

Deductive techniques support more varied and more abstract models, more expressive
specification, more varied properties, and more reusable verifications than finite state
verification techniques. The essential utility of theorem proving or proof checking in-
cludes the following. With the exception of establishing the consistency of axioms, these
benefits are self-explanatory and are listed  with little additional comment.

● Guarantee Type Correctness: The type correctness of some specification languages
is undecidable. In such cases, theorem proving or proof checking may be used to
discharge obligations incurred during typechecking, thereby establishing that a
specification is type-correct. As noted in Chapter 5, significant benefit accrues
from typechecking alone.

● Establish (Relative) Consistency of Axioms: A specification can be shown to be
consistent by demonstrating that its axioms have a model. In the context of
mechanical verification, this is accomplished via theory interpretations that re-
late a source specification (the one to be shown consistent) to a target speci-
fication whose consistency has presumably already been established16.  This is
accomplished by defining a mapping from the types and constants of the source
specification to those of the target specification and proving that. the axioms of
the source specification expressed in terms of that mapping are provable theo-
rems of the target specification. The proof demonstrates relative  consistency;

.—. —_ .——
lGFor example, by specifying the target specification definitionally  in a system  that guarantees con-

servative extension.
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that is, if the target specification is consistent, the source specification is consis-
tent. [ORSVH95, p. 111] cites an example that underscores the need to validate
axiomatic specifications by exhibiting an intended model.

● Challenge Underlying Assumptions: One of the benefits of formal specification
is the explicit statement of underlying assumptions. Once formalized, these as-
sumptions may be challenged by formulating and proving conjectures that exer-
cise them. Design implications of new or modified assutnptions  may be sitnilarly
probed in this way.

● Establish the Correctness of Hierarchical Layers: Theory interpretations may also
be used to demonstrate the correctness of hierarchical development, that is, to
prove that a niore  concrete specification is a satisfactory implementation of a
more abstract one, as illustrated in [Bev89, BDH94].  The approach is similar to
that previously mentioned in the context of establishing the consistency of a set
of axioms.

● Conjirm  Key Properties and Invariant: System properties and constraints may
be precisely stated and deductively verified.

● Predict and Calculate System Behavior: System behavior may be predicted or
calculated by formulating and proving challenges or putative theorems that char-
acterize the behavior or functionality of interest.

● Facilitate Replication and Reuse: Reusing and adapting extant proofs, as well as
formulating new challenges, provides a systematic exploration of the implications
of changes and extensions, as well as an effective vehicle for generalizing results for
later reuse. Automation is the key to faithfully replicating or reusing a detailed
deduction. The L,aRC bit vectors library [BMS+96]  illustrates many of the issues
involved in developing general and effectively reusable formal analyses.

The use of proof as a form of absolute guarantee is not included in this list for reasons
outlined in Section 7.5, and succinctly captured in the following quote from [RvH93]: “A
mechanical theorem prover does not act as an oracle that certifies bewildering arguments
for inscrutable reasons, but as an implacable skeptic that insists on all assumptions being
stated and all claims justified.”

6.2 Finite-State Methods

The state space of a system can be loosely defined as the full range of values assumed
by the state variables of the program or specification that describes it. The behaviors
that the system can exhibit can then be enumerated in terms of this range of values. If
the state space is finite and reasonably small, it is possible to systematically enumerate
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all possible behaviors of the system. However, few interesting systems have tractable
state spaces. Furthermore, the state space of a formal specification can be infinite, for
example, if it uses true mathematical integers as values for state variables. Nevertheless,
there are various techniques for “downscalin.g”  or reducing the state space of a system,
while preserving its essential properties. Finite-state methods refer to techniques for
the automatic verification of these finite-state systems or of infinite-state systems that
can be similarly ‘keduced” by virtue of certain structural symmetries or uniformities.
Given a formula specifying a desired system property, these methods deterl-nine  its truth
or falsity in a specific finite model (rather than proving its validity for all models). For
linear-time and branching-time logics,  the model checking problem is computationally
tractable, whereas the validity problem is intractable.

6.2.1 Background

This section provides background information useful for an understanding of finite-state
systems, including a brief introd uct ion to temporal logics, fixed point characterizations,
and the modal mu-calculus.

6.2.1.1 Temporal Logic

Temporal logic (also known as tense logic) [Pnu77,  Bur84]  augments the standard opera-
tors of propositional logic with tense oyemtom  that are used to formalize time-dependent
conditions. The simplest temporal logic adds just two operators: the (weak) future op-
erator, F’, and the (weak) past operator, P. The formula Fq is true in the present if q
is true at some time in the future and, similarly, the formula Pq  is true in the present
if g is true at some titne in the past. These operators can be combined to assert quite
complex statements about time-dependent phenomena. For example, q =+ FPq can be
interpreted as “if q holds in the present, than at some time in the future q will have
held in the past.” [McM93, p. 13] The duals of these operators, -@’m,  usually abbre-
viated G and 1P–I, usually abbreviated H, yield the corresponding strong future and
past operators. Gq - ~F7g means that q is true at every moment in the future, and
Hq G -+’~g means that g is true at every moment in the past.

A temporal logic system consists of a complete set of axioms and inference rules
for proving all valid statements in the logic relative to a given model of titne.  Some
of the more commonly used models include partially ordered time, linearly ordered
time, discrete time, and branching (nondeterministic) time. Linear time corresponds
to commonly held notions of time as a linearly ordered set measured with either the
real or natural numbers. Discrete time refers to a model in which time is represented
as a discrete sequence measured by the integers, as commonly found in engineering.
Interval Temporal Logic [Mos85] is based on discrete time. Branching time is a model
in which the temporal order < defines a tree that branches toward the future; every
instant has a unique past, but an indeterminate future [McM93, p. 15]. Temporal
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“ 17 have been used to express program prop-logic andthe  closely related dynamic  logzc
erties  such as termination, correctness, safety, deadlock freedom, clean behavior, data
integrity, accessibility, responsiveness, and fair scheduling [Bur84, p. 95]. Duration Cal-
culus [CHR92],  a notation used to specify and verify real-time systems, is an extension
of interval temporal logic that uses a notion of durations  of states within a time inter-
val, but without explicit mention of absolute time. Temporal logics, and modal  logics
in general, are typically given a model theoretic semantics known as possible worlds
semantics. A model in this semantics is usually referred to as a Kripke model, after
Saul Kripke, one of the first mathematicians to give a model-theoretic interpretation of
modal logic [Kri63a,  Kri63h, Kri65].  The basic idea of Kripke semant ics is to relat ivize
the truth of a statement to temporal stages or states. Accordingly, a statement is not
simply true, but true at a particular state. ‘The states are temporally ordered, with the
type of temporal order determined by the choice of axioms.

For example, the sc)-called minimal tense logic,  Kt, is defined by vau Benthem as
follows [vB88, p. 7].

● Axioms:

● Rules of Inference:

1. 0,@ ~ ~~/4 (Modus Ponens)

2. if r#I is a theorem, then so are G@, If@ ((’Temporal) Generalization)

Various axioms may be added to Kt to characterize further assumptions on the
temporal order, such as transitivity and antisymrnetry  (which together yield a partial
order), as well as density, linearity, and so forth. In the context of finite state methods,
the notions of linear time and branching time are of particular interest.

‘ 7The term “dynamic logic” refers generically to logical systems used to reason about computer
programs. The  basic premise is that certain classical logical systems that are inherently “static” can be
extendeci  quite naturally to reason about ‘(dynamics.” In addition to its application to computational
systems, the study of dynamic logic and related topics has more general philosophical and mathematical
implications as a natural extension of modal logic to general dynamic situations [Har84].
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Qz
The set of states in an interpretation represents not only past states, but all accessible

(possible)  future states. Furthermore, truth is persistent. Intuitively, this means that a
sentence true at a given state will always be true at later states. The following definitions
are due to Burgess [Bur84, pp. 93-4]. A Kripke frame is composed of a nonempty set
S, equipped with a binary relation R. A valuation in a frame (S, R) is a function, V,
that assigns to each variable, pi, a subset of S, and each (syntactically well-formed)
sentence a truth value. Intuitively, S represents the set of states and R represents the
earlier-later relation. A formula, Q is valid in a frame (S, 1?) if V(a) = X for every
valuation ~’ in (X, R).  a is satisfiable in (X, R) if V(a) # 018 for some valuation V in
(S, R), or, equivalently if -la is not valid in (S, R). In addition, a is valid over a class,
K, of frames if it is valid in every (S, R) E K, and is satisfiable over K if it is satisfiable
in some (S, R) c K or, equivalently, if ma is not valid over K.

The interaction of universal and existential quantification with temporal operators
is complex, introducing both philosophical and technical difhcult ies. Burgess [13ur84,
p. 131] notes that the philosophical issues include “identity through changes, cent inuity,
motion and change, reference to what no longer exists or does not exist, essence and
many, many more” and the technical issues include “undecidability, nonaxiomatizability,
undefinability or multidimensional operators, and so forth.” Thoughtful discussion of
these issues can be found in [Gar84]  and [COC84].

6.2.1.2 Linear Temporal Logic (LTL)

Linear time corresponds to the usual notion of time as a linearly ordered set, measured
either with the real or the natural numbers. The temporal order relation < is total, that
is, antisymmetric, transitive, and comparable. comparability  means that for all states
S 1 and sz in the same execution sequence, either SI < sz or sz < sl or S1 = SZ). The
extension of Kt obtained by adding the following two axioms (of right- and left-linearity,
respectively) characterizes the linear temporal frames.

Alternatively, the following, somewhat more intuitive axioms can be used to char-
acterize total orders [Bur84, p. 104].

180 denotes the empty set
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Linear temporal logic is typically extended by two additional operators, the until
operator and the since operator, abbreviated U and S, respectively.

Q
z

The following definitions are based on a discussion in [hlcM93,  p. 14] and assume
that,  all subscripted states, s.., are comparable. @ UI/~ is true in state Sj if there is some
state Sk such that Sj < Sk and @ is true in sk, and for all Sz, such that sj < si < sk,
~ is true in state s~. Intuitively, @ holds at some time in the future, until which time
@ holds. Similarly, qMI/J  is true in state s~ just in case there is some state sk such that
Sk < sj and @ is true in %, and for all sz, suc~l that sj < Si < Skt @ is true in state Si.

Informally, @ held at some time in the past, since which time ~ has held.

m

6.2.1.3 Branching Time Temporal Logic

A treelike or branching fratne is one in which the temporal order defines a tree that
branches toward the future. Treelike frames represent ways in which things can evolve
nondeterministically;  every moment, or state has a unique, linearly ordered past, hut an
indeterminate future. Following Thomason [Tho84, p. 142], a t reelike frame for a tense
logic consists of a pair (T, <), where T is a nonempty set and < is a transitive ordering
on T such that if t] < t and tz < t, then either tl = t2 or tl < t2 or t2 < tl. The
tree-ordered frames can be characterized by dropping the axiom

(PF~,)

from the axioms of linear time logic.
ordered subset of T containing t.

–+ (1’() v ~ v Fd)

A branch through t 6 T is a maximal linearly

The semantics for branching time temporal logic are somewhat problematic. As
Thomason [Th084.  p. 142] notes, interpreting future tense in these t reelike structures
can be perplexing. For example, take a simple structure with three rncments,  the root,
to, and two branches labeled t] and t2, respectively. Assume @ true at to and tl and
false at t2. Is F@ true at to? It is hard to say. The answer involves technical issues that
revolve around the reconciliate ion of tense with indeterminism. The logical argument for
determinism claims that it is not possible to provide a correct definition of satisfaction
for these struct m-es, that is, to provide a definition that does not generate validities
that are incompatible with the intended interpretation. Thomason [Tho84] presents
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an interesting discussion of strategies advanced by indeterminists to circumvent these
claims.

The propositional branching time temporal logics  that provide the foundation for one
of the principal approaches to finite state verification of concurrent systems are called
Computational Tree Logics. There are basically two variants: CTL and CTL*. The
logic CTL* combines both branching-titne  and linear-time operators. A (computational)
path quantifier, either A or E, denoting all or some paths, respectively, can prefix
assert ions composed of arbitrary combinations of the linear time operators G, F, U,
and the “nextt ime” operator, X (see below). There are two types of formulas in CTL*:
state  formulas that are true in a given state and path formulas that hold along a given
path. The following definitions are taken from [CGK89, pp. 83-84]. Let AF’ be the set
of atomic proposition names.

A state formula is either:

. A, if A E AP.

● If f and g are state formulas, then Vf and f V g are state formulas.

● If ~ is a path formula, then E(f) is a state formula.

A path formula is either:

● A state formula.

● If f and g are path formulas, then =f, f V 9, Xf and fUg are path formulas.

CTL*” is the set of formulas generated by the above rules. CTL is a restricted subset
of CTL* that permits only branching-time operators. CTL is obtained by limiting the
syntax for path formulas to the following rule.

● If f and g are state formulas, Xf and fUg are path formulas.

The following abbreviations are also used in writing CTL* and CTL formulas:

●  jAgG1(7fV7g)

●  A ( f )  - YE(-lf)

.  F ( f )  - trueUf

●  G(f) s -TF-lf
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Q2’

The semantics of CTL* are defined with respect to a (finite Kripke) structure K =
(117, R, L), where

● W is a set of states or worlds.

● R c W x W is the transition relation. R is total. WI ~ W2 indicates that
(ul,, u)~)  G R.

● L: W -+ P(AP) is a function that labels each state with a set of atomic proposi-
tions true in that state.

Let .fl and ~z be state formulas, gl and gz be path formulas. A path in K is defined
as a sequence of states 7r = too,  wl, . . . such that for every i > 0, wi ~ wi+l.  n~ denotes
the sufiz of 7T starting at w~. K, w ~ ~ means that ~ holds at state w in structure K.
Similarly, if g is a path formula, K, m ~ g means that g holds along path n in structure
K. The relation 1= is inductively defined as follows.

● w + A IFF A G L(w).

● u) ~ -Tfl IFF it is not tile case that w ~ il.

● w + fl V fz IFF W + fl 0’7’ W) (== fz.

● w + E(gl  ) IFF there exists a path 7r starting with w such that tr # 91.

● n ~ ~1 IFF w is the first state of m and w ~ .fI.

● m + ~gl IFF it is not the case that n ~ gl.

● n ~ g1Ug2 IFF there exists a k ~ O such that # \ g2 and for all O ~ j <
k, 7rJ +gl.
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6.2.1.4 Fixed  Points

A functiod  is a function that maps functions to functions, that is, a function that
takes functions as arguments and returns functions as values. A functional may be
denoted by a lambda expression, kz.j, where  z is a variable and ~ is a formula. The
variable z is effectively a place holder. When the functional is applied to a parameter,
p, p is substituted for all instances of x in j. 19 For example, if -T = k. (Z A y), then
~(true) = true A y = y. A functional ~ is monotonic if p c q -+ ~(p) C ~(g).

The following definition and example are taken from a discussion in [McM93,  p. 19].
A fixed point of a functional -y is any p such that ~(p) = p. For example, if ~ is defined
as above, then x A y is a fixed point of T, since 7(x A y) = (Z A y) A y = z A g.

A monotonic functional has a least  fixed point and a greatest jized point, also referred
to as extremal  jized points. The least (greatest) fixed point was defined by Tarski [Tar55]
as the intersection (union) of all the fixed points of the functional. The least and greatest
fixed points of a functional Az..f are denoted /Lx.f and zm..f, respectively. Assumiug
the functional is continuous, the extremal  fixpoints can be characterized as the limit of
a series defined by iterating the functional.

f?
z

The following definitions are also taken from [h1cM93,  p. 19]. A functional, -Y,
is union-continuous (intersection-continuous) if the result of applying -Y to the union
(intersection) of any nondecreasing infinite sequence of sets is equal to the result of
taking the union (intersection) of ~ applied to each element of the sequence. Tarski
showccl that if a functional is monotonic and union-continuous, the least fixed point of
the functional is the union clf the sequence generated by iterating the functional starting
with the initial value false, that is, for any such functional, -Y, the least fixed point is
UZVZ (faZse).  Similarly, the greatest fixed point of a monotonic, intersection-continuous
functional, -y, is ni~i(i~2f~).

Any monotonic fuuctioual is necessarily continuous (that is, union-continuous and
iutersect  ion-cent inuous) over a finite set of states [McM93, p. 19]. Fixed points of fuuc-
tionals  have been used to characterize CTL operators, resulting in E’ffiCkIlt algorithms
for temporal logic model checking. The standard reference for fixed point characteriza-
t ions of CTIJ formulas is [EI.86].

6.2.1.5 The Mu-Calculus

The mu-calculus is a logic based on extremal fixed points that is obtained by adding
a recursion operator. p, to first-order predicate logic (FOL)  or to propositional logic.

—
lgThe  discussion a.ssurnes the usual restrictions on lambda-conversion that ensure that variables oc-

curring free in p are not bound by operators or quantifiers in f.



NASA-GB-001-97 109

In the context of FOL, the p operator can be viewed as an “alternative quantifier for
relations” that replaces the standard quantifiers V and 3 on relations (but not on in-
dividuals) [Par76, p. 174], while in propositional logic, the p operator provides new
n-ary connective. Kozen [Koz83]  credits Scott and De !dakker [SB69] with originati-
ng the mu-calculus and Hitchcock and Park [H P73], Park [Par70],  and De Bakker
and De Roever [13R73]  with initit  ially developing the logic. Park [Par76, p. 173] notes
that the mu-calculus was a natural response to the inability of first-or(ler  predicate
logic ‘(to express interesting assertions about programs“ in a reasonable way. The mu-
calculus is “strictly intermediate” in expressive power between first- and second-order
logics [Par76].  There are several different formulations of the mu-calculus. Some, like
those of [BR73,  HP73],  present the calculus as a polyadic  relational system that sup-
presses individual variables and replaces existential quantification (3) on individuals
wit h a composition operator on relations [Par76].  Others, like the version below re-
produced from [McM93, pp. 114-115] and based on [Par76],  retain the more traditional
system of predicate logic.

There are two kinds of mu-calculus formulas: relational formulas and Boolean formu-
las, and, correspondingly, two kinds of variables: relational variables (for example, the
transition relation, R) and individual variables (for example, the state, Z). A model for
the mu-calculus is a triple M = (S,@, #~), where S is a set of states, @ is the individual
interpretation function that maps every individual variable to an element of S, and @ is
the relational interpretation that maps every n-ary relational variable onto a subset of
Sn. The syntax of Boolean formulas is defined as follows, where p and q are syntactic
variables representing Boolean formulas, z is an individual variable, (z], . . . . ~n ) is a
vector of individual variables, and R is an n-ary relational formula.

. true and false are Boolean formulas.

● p V q and Yp are Boolean formulas.

● %.p is a Boolean formula.

●  R(zl, ...> Zn ) is a Boolean formula.

The formula 3x.p  is true just in case there exists a state z in S such that p is true in
x. Similarly, the formula R(z, y) is true just in case the pair (q5(z),  ~(y)) is a member
of V(R).

The relational formulas are defined as follows, where, in addition to the definitions
given above, F is an n-ary relational formula that is formally monotonic in R.

● Every n-ary relational variable R is an n-ary relational formula.

● A(zl, . . . , Xn ) .p is an n-ary relational formula.
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● llR.P and vR.  F are relational fornlulas.20

Chapter 6

In a given model (S, ~, ~~),

● The relational variable R is identified with the relation ~)(R).

●  A(z] >... , Zr, ).p denotes the set of all n-tuples (X:l, . . . . Z,l) such that p is true.

● The formulas p R.F and vR. F stand for the least fixed point and greatest fixed
point (of ~ = ~R.F),  respectively.

6.2.2 A Brief History of Finite-State Methods

Finite-state methods grew out, of several independent developments in the mid to late
1970s, including early work on temporal logic and early activity in protocol specification
and verification. Pnueli  first proposed the use of temporal logic to reason about concur-
rent and reactive programs [Pnu77].  Formalization of safety properties for concurrent
systems followed shortly thereafter. Pnueli’s early proofs were largely manual, as were
the initial techniques used to verify protocols. The realization that many concurrent
programs can be viewed as communicating finite-state machines combined with results
in reachability analysis and the realization of their applicability to protocol analysis
soon led to techniques for automatic verification of correctness properties. 21

The first such techniques arose in the context of protocol validation [BWHJ78,Haj78,
WZ78,  R1380]. Shortly thereafter, in the early 1980s, Holzmann  built a general protocol
verifier based on reachability analysis [H0181],  Sifakis and his students at Grenoble Uni-
versity in lhance  began work on the French validation system Cesar [Que82, QS82], and
Clarke and his students at Carnegie Mellon University (CMU) independently developed
the Extended Model Checker (EMC) system [CE81,  CES86]. Both Cesar and EMC used
algorithms for the braIIChillg-tiIlle  logic CTL. The CMU system also incorporated slight
modifications to CTL to accommodate fairness constraints [B Ch!l+ 90]. Holzmanrr’s  ini-
tial protocol verifier was based on a simple process algebra, but his subsecprent  systems
use standard automata theory. In all three cases, this early work led to currently in~-
portant systems: Holzmann’s  work culminated in SPIN,  the Grenoble eflort  produced
Cesar  and several specialized variants, and CMU’S EMC evolved into SMV.

Research in model checking for verifying lletwork  protocols and sequential circuits
quickly led to the realization that application of model checking techniques to nontrivial
systems required viable approaches to the so-called state explosion problem. The term
refers to the fact that in the worst case, the number of states in the global state graph
for a system with N processes may grow exponentially with AT. There has been a great

—20v may be defined in terms of p (vR.1’  = =p12. =F) or specified as a (primitive) fixpoint operator as
shown here.

21 Initially, safety properties. Liveness and fairness followed  later.
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deal of work on the computational complexity of model checking algorithms, as well
as on techniques to address the state explosion problem. One of the earliest and most
important techniques for CTL-based  model checking systems is a symbolic, rather than
an explicit, representation of the state space. That is, the set of states is represented
by a logical formula that is satisfied in a given state if and only if the state is a member
of the set, rather than by a labeled global state graph. Similarly significant benefits for
LTL-based  model checking have been obtained with partial order techniques [God90,
Va190,  Pe193, GPS96]. For certain applications, both techniques can reduce exponential
growth of the state space to linear or sublinear growth [HoI].

To provide further economies for CTL-based  model checking, symbolic representa-
tions capable of exploiting structural regularities and thereby avoiding explicit construc-
t ion of the state graphs of modeled systems have been sought. The representat ion that is
currently most widely used is a canonical, but highly compact form for Boolean formulas
known as ordered binary decision diagrams or OBDDS  [Bry86].22 An OBDD is similar
to a binary decision tree, except that its structure is a directed acyclic graph rather than
a tree and a strict order governs the occurrence of variables. Bryant [Elry86]  has shown
that there is a unique minimal 013DD for a given formula under a given variable order-
ing. Variable ordering is thus critical for determining the size of the minimal OBDD
for a given formula. Although the use of symbolic representation allows significantly
larger systems to be modeled, the state explosion problem persists as a computational
barrier restricting the size and complexity of systems that can be verified using finite
state methods.

Other strategies have been and continue to be proposed to address this prob-
lem. These include exploiting structural symmetries in the systems to be veri-
fied [CFJ93,  ES93, ID93], using hierarchical [MC85]  and compositional [CLM89,  GS90]
techniques, applying abstraction methods [CGL92, Kur94],  and employing on-the-fly
intersection tec}miques  [H0184, CV WY92, FMJJ92]. For LTL-based model checking,
efFicient  on-the-fly techniques have been a significant development because on-the-fly
verification algorithms require only that part of the graph structure necessary to prove
or disprove a given property, rather than the entire Kripke structure (for example, as
required by fixpoint algorithms). Compositionality and abstraction exemplify a “divide-
and-conquer” strategy that attempts to reduce the verification problem to a series of
potentially more manageable subproblems  [God96, p. 17], whereas partial order and
on-the-fly methods attempt to reduce the size of the checked state space and the extent
of the search, respectively. Some of these techniques may be usefully combined. Par-
tial order and on-the-fly methods are a good example, as noted in [Pe194]. Others are
complementary. Compositional and abstraction methods, for example, are essentially
orthogonal – and thereby complementary to - partial order techniques [God96,  p. 17].

220BBD  is sometimes written simply as BL)D, although as McMillan  notes [Mch193, p. 32], the
variable ordering (which is crucial to obtaining the canonical reduced form) is what distinguishes OBDI)S
from the more general class of BI)Ds.
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6.2.3 Approaches to Finite-State Verification

As noted earlier, finite-state verification techniques emerged in the late 1970s and early
1980s from two independent developments: temporal logic model checking [C1381 ,Que82]
and protocol analysis [Haj78, Wes78].  Subsequent developments can be classified with
respect to several dimensions, reflecting factors such as representation strategy, type
of algorithm, and class of system addressed. The distinctions made by representa-
tion strategy are broad and therefore well-suited tothe general discussion offered here.
Representation strategy distinguishes approaches that useafinite state representation
for the system modeland a logical calculus for thespecificatioll-  the symbolic model
checking approach, from techniques that use finite state machines to represent both
thesysteln  lnodelatld  thespecificatioll----the  auto1nata-theoretic  approach. In practice,
verification systems for asynchronous systems (software) are largely automata-based, ‘
exploit on-the-fly techniques, and support LTL, while systems for synchronous systems
(hardware) are based either on fixpoint algorithmso  rsymbolicmethods,  and support
CTL, CTL*, or propositional mu-calculus [Hoi].

6.2.3.1 The Symbolic Model Checking Approach

In the symbolic model checking approach, verification means determining whether a
given logic formula ~ is valid in a given Kripke model M, that is, determining which
states S in a finite Kripke structure M = (S, R, L) satisfy j. Initially, the temporal
logics CTL, CTL*, and I,TI, were used. Later algorithms typically characterize the
CTL (LTL) operators (or more precisely, the interpretation of CTL (LTL) operators in a
Kripke model) in the Mu-calculus, a logic of extrernal  fixed points that has been shown to
be strictly more expressive than CTL [EL85] .23 The Mu-calculus is attractive because it
can be used to express a variety of properties oft ransition systems and provides a general
framework for describing model checking algorithms. A model checking algorithm for
the Mu-calculus taken from [BCM+  90, p. 7] is presented in Figure 6.1.

Verification systems that perform temporal logic model checking are generally re-
ferred to as model checkers, reflecting the fact that the basic function of these systems
is to decide whether a given finite model (that is, a Kripke model) satisfies a formula
in a given logic. Models are expressed in suitable languages, and assertions about the
model are specified in a different language, typically a temporal logic. In the context of
model checking, a suitable language is a reasonably expressive, high-level language, with
a precise mathematical semantics that defines its translation to Boolean formulas (OB-
DDs) or other forms suitable for symbolic model checking.24 There are several varieties

of model checkers, the most common being I,TL model checkers that verify linear-time
.—

23A ‘language L’ is strictly  more expressive than a language L if there are formukrs  that can  be

expressed in L’ but not in L, and all formulas  expressable in L are also expressable in L’.
24 Althou@ BDDs are still the ~,ost  ~idelY  used symbolic repreSeUtatiCM for finite  state ~’erificatiO1l)

other representations have been used instead of or in addition to BDDs. For example, LUSTRE is a
synchronous dataflow  language stylistically similar to the ShlV language. Verirnag’s  POLKA system
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— — —
function Bdd.f(f: formula, I_p: rel-interp) : BDD;

c a s e
f: an individual variable

return Bdd_Atom(f);
f: of the form fl AND f2

return Bdd_And(Bdd_f(fl, I_p), Bdd_f(f2, I_p));
f: of the form NOT fi

return Bdd_Negate(Bdd_f(fl, I_p));
f: of the form EXISTS x [fl]

return Bdd_Exists(x, Bdd_f(f, I-p);
f: of the form Z(xl, . . ..xn)

return Bdd_R(Z, I_p)(dl <- xl). ..(dn <- xn);
end case;

function Bdd_R(R: rel-term, I_p: rel-interp) : BDD;
case
R: a relational variable

return I_p(R);
R: of the form LAMBDA xl, . . ..xn [f]

return Bdd_f(f, I_p)(xl <- all). ..(xn <- dn);
R: of the form MU Z [RI]

return FixedPoint(Z, RI, I_p, FalseBdd);
end case;

function FixedPoint(Z: rel-var,  R: rel-term,
I_p: rel-interp, T_i: BDD) : BDD;

let T_i+l = Bdd_R, R-p(Z <- T_i);
if T_i+l = T_i return T_i

else return FixedPoint(Z, R, I_p, T_i+l);——

Figure 6.1: Burchet cd.’s Mu-Calculus ModeI  Checking AIgorithnl.

properties of finite  Kripken~odels, and CTLrnodel checkers that verify branching-time
properties of finite Kripke  models.

Forexample,  the SMVsystem[McM93, CMCHG96],  one ofseveral  CMU systemsto
evolve from EMC, uses asynchronous dataflow  language (also called SMV) with high-
level operations and nondeterrninistic  choice. The transition behavior ofan SMVpro-
gram, including its initial state(s) , is determined by a collection of parallel assignments,

~oneofseveral systems toevolvefrom  Cesar)  isusedto verify LUSTRE[HCRP91, HLR92, HFB93]
programs with integer variables. POLKA uses convex polyhedra to represent linear constraints. Re-
cently, a new data structure named Queue-content Decision Diagram (QDD)  has been introduced for
representing (possibly infinite) sets of queue-contents. QDDs have been used to verify properties of
col~~n~unication protocols nlodeled  by finite-state ~nachines that useunbounded  first  in, first  out (FIFO)
queues to exchange messages [BG96]. QDDshawal sobeen used incombination  with BDDs  to improve
the efficiency of (BDD-based)  symbolic model-checking techniques [G L96].
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possibly involving a unit of delay. Asynchronous systems may be modeled by introducing
processes that have arbitrary delay. The SMV language supports modular hierarchical
descriptions, reuse of components, and parametrization [CMCHG96,  p. 420]. An SMV
program consists of a Kripke model and a CTL specification. The state of the model is
defined as the collection of the program’s state variables, and its transition behavior is
determined by the collective effect of the parallel assignment statements. Variables arc
restricted to finite types, including Boolean, integer subrange, and enumerated types.
The ShflV program in Figure 6.2 for a very simple protocol illustrates the basic idea.
The example is from McMillan  [Mch193].

1

.—— ———. ——— — ————— .—. —. —....
MODULE main
VAR

request: boolean;
state: {ready ,busy};

ASSIGN
init(state) := ready;
next(state)  := case

state = ready & request : busy;
1 : {ready ,busy};

esac;
SPEC

AG(request  -> AF state = busy)

— _—— — —.— — . — . — — —

Figure 6.2: A Simple SMV Program [hlch193,  p. 63].

Values are chosen nondeterministically  for variables that are not assigned a value or
whose assigned value is a set. For example, the variable request is not assigned in the
program, but chosen nondeterministically by the SMV system. Similarly, the value of
the variable state in the next state is chosen nondcterministically  from the values in the
set {ready, busy}. 25 The specification states that invariant Iy, if reque st is true, then
the value of state is busy. An SMV program typically consists of reusable modules.
ShIV processes (not illustrated here) are module instances introduced by the keyword
process. Safety and livencss  properties are expressed as CTL specifications. Fairness
is specified by means of fairness constraints that restrict the model checker to execution
paths along which a given CTL formula is true infinitely often.

6.2.3.2 The Automata-Theoretic Approach

In the automata-theoretic approach, verification means comparing the externally visible
behaviors of the finite state machine representing a system model with the finite state
—

251,ik~  ~niIlter~reted  tY~es,  nondeterminisnl can be useful for describing SyStems abstractly (~~rhere

values of certain variables are not determined) or at levels that leave design choices open (to the
implementor).
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machine representing its specification. ‘The method of comparison varies, depending on
the technique and the particular class of system for which it was developed.

6.2.3.2.1 Language Containment

In the language intersection approach first described by [VlfT86],  verification con-
sists of testing inclusion between two w-automata, where one automaton represents the
system that is being verified and the other represents its specification or task. Inclusion
denotes the strict subset relation between the languages of the two automata. For a
process F’ modeling a system to be verified and a task T that P is intended to perform,
verification consists of the test L(P) C L(T), where L(P) denotes the set of all “be-
haviors” of the modeled system and L(T) denotes the set of all “behaviors” consistent
with the performance of the modeled task or specification. Typically, F’ is a system
of coordinat iug processes modeled by the product process I’ = @F’z, where each Pi is
an u-automaton .26 This semantic model accommodates specific reduction  algorithms
that provide one response to the computational complexity problems associated with
more general model checking. The basic idea is to replace a computationally  expen-
sive test L(P) c L(T) with a computationally  cheaper test L(F”) c L(T’),  such that
.C(P’) c .C(T’) =+ L(P) C L(T). P’ and 2“ are derived from P and T, respectively, by
homomorphisms on the underlying Boolean algebra.27

The reduction of P is relative to T, that is, relative to a given task or specification;
each task induces a different reduction. Kurshan [Kur94]  develops the theory underlying
such reductions.

The verification system typically associated with the language-inclusion approach
is COSPAhT  (Coordination Specification Analyzer) 2$. COSPAN’S native language is
S/R, a data-flow language based on the selection/resolution model of coordinating pro-
cesses. S/R distinguishes state variables from combinational variables, the latter being
dependent variables whose values are functions or relations of the state variables. The
S/R language provides nondeterministic, conditional (“if-then-else” ) variable assign-
ments; bounded integer, enumeration, 13001ean,  array, record, and (array and record)

——.
‘26 For ~urpose~  of this dis~u~~i~n, the distinction between finite State machines or generators (o f

behavior) and finite state automata or acceptors (of behavior) has been glossed over. The former is
most convenient for modeling a system and the later for modeling its properties. Interested readers
should see [VW86] or [Tho90].

27A Boolean algebra is a set closed under the Boolean operations A, V, ~. A homomorphism is a
mapping (function) from one algebraic structure to another that is defined in terms of the algebraic
operations on the two structures. In the case of two Boolean algebras,  B and B’, a map # is a
homomorphism just in case

@(2 A y) == @(x) A @(y)

@(z v y) = ~(x) v #J(y)

@(nr)  == -@(r)

2SCOSPAN  is also used as the “verification engine” in the commercial hardware verification tool
FormalCheck, a trademark of the Bell Labs Design Automation center [HHK96].
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pointer types; and integer and bit-vector arithtnetic. S/R also supports modular hi-
erarchal development, scoping, parallel and sequential execution, hOInOInOrphiSrn  dec-
laration, general u-automaton fairness (acceptance), and (ti-regular)  property specifi-
cation [HHK96,  p. 425]. COSPAN provides both symbolic- (that is, 13 DD-based) and
explicit-state enumeration algorithms.

6.2.3.2.2 State Exploration

The terms “state exploration” and “reachability analysis” refer to finite-state ver-
ification techniques that begin with an initial state and explicitly enumerate or con-
struct the reachabIe  state space of a system model, typica]ly using standard search
algorithlns-- -such as depth-first or breadth-first search-- that have been optimized to
alleviate state-space explosion. The state exploration approach contrasts with BDD-
based techniques, which use a symbolic (implicit) representation of the state space.
Sms  [HP96]  and Mur@ [Di196]  exemplify this approach. Both verifiers use an asyn-
chronous, inter-leaving model of execution in which atomic operations from a collection
of processes execute in an arbitrary order.

SPIN. SPIN is automata-based and has full LTL model-checking capability. Each
process of the model is translated into a finite automaton. Properties to be checked
are represented as Btichi automata that correspond to a never  claim, so-called because
these claims formalize behavior that should never occur. In other words, never-claims
correspond to violations of given correctness properties. A model is checked against its
required properties by calculating the intersection of the property automaton and the
process automata. A nonempty intersection indicates a possible correctness property
violation. SPriN  uses a verification procedure based on reachability  analysis of a model
by means of optimized graph traversal algorithms. This approach is also referred to as
state exploration.

The SPIN model checker uses a nondeterministic, guarded command language called
PROMELA  that was developed to specify and validate protocols by modeling process
interaction and coordination. PItOM~LA  provides variables and general control-flow
structures in the tradition of Dijkstra’s guarded command language [Dij76]  and Hoare’s
language CSP [Hoa85]. Correctness criteria are formalized in PROMELA in terms of
assertions that capture both local assertions and global system invariants, labels that
can be used to define frequently used correctness claims for both terminating and cyclic
sequences (for example, cleadlock,  bad cycles, and liveness  (acceptance and progress)
properties), and general temporal claims that define temporal orderings of properties
of states expressed either as never-claims or as LTL formulas (that SPIN translates into
PROMELA never-claims) [Ho191, HP96].

SPIN uses depth-first search and a single-pass, on-the-fly  verification algorithm cou-
pled with partial order reduction techniques to reduce the state explosion problem.
On-the-fly algorithms attempt to minimize the amount of stored information, comput-
ing the intersection of the process and property automata only to the point necessary
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to establish the nonemptiness of the resulting (composite) automaton. Partial order
reduction algorithms exploit the observation that the order in which concurrent or in-
dependently executed events are interleaved typically has no impact on the checked
property. It follows that instead of generating all execution sequences, it is sufficient to
generate a reduced state space composed of representatives for classes of sequences that
are not distinguishable with respect to execution order. ‘The reduction must be shown
to preserve safety and liveness  properties, but this is accomplished in the course of the
verification.

Mur@ The name “Mur@’  refers both to a verifier developed to analyze finite-state
concurrent systems such as protocols and memory models for multiprocessors, and to
its language. The Mur@ description language is a guarded-command language based
on a Unity-like formalism [CM88]  that includes user-defined datatypes, procedures, and
parametrized descriptions. A Mur@ description consists of a collection of constant and
type declarations, variable declarations, transition rules (guarded commands), start
states, and invariants. Predefine data types include subranges, records, and arrays.
Mur@ statement types include assignment, condition, case selection, repetition (for- and
while-loops), and procedure calls. Mur@ rules consist of a condition and an action. A
condition is a Boolean expression on the global variables, and an action is an arbitrarily
complex statement. Each rule is executed atomically, that is, without interference from
other rules.

Correctness requirements are defined in Mur@ in terms of invariants written as predi-
cates or conditions on the state variables. Invariants are equivalent to error statements,
which may also be used to detect and report an error, that is, the existence of a sequence
of states beginning in a start state and terminating in a state in which a given invari-
ant fails to hold. in addition to invariant violations, error statements, and assertion
violations, Mur@ can check for deadlock and, in certain versions, liveness  properties.

Mur~ uses standard  breadth- or depth-first search algorithms to systematically gen-
erate all reachable states, where a state is defined as the current values of the global
variables. State reduction techniques, including symmetry reduction, reversible rules,
replicated component abstraction, and probabilistic algorithms are exploited to alle-
viate state explosion [Di196]. Symmetry reduction uses structural symmetries (in the
modeled system) to partition the state space into equivalence classes, thereby signif-
icantly reducing the number of states generated in applications such as certain types
of cache coherence protocols [I D93]. Reversible rules are rules that preserve informa-
tion and can tlierefore  be executed “backwards,” yielding an optimizaticm that avoids
storing transient states [I D96a].  Systems with identical replicated components can be
analyzed using explicit state enumeration in an abstract state space in which the exact
number of replicated components is treated qualitatively (for example, zero, one, or
more than one replicated components) rather than quantitatively (the exact number
of replicated components) [I D96b]. The combination of symmetry reduction, reversible
rule exploitation, and replicated component abstraction has been reported to yield mas-
sive reductions in the state explosion problem for cache coherence protocols and sitnilar
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applications [Di196, p. 392]. Probabilistic verification algorithms are being explored as
a way of reducing the number of bits in the hash table entry for each state [SD96].

6.2.3.2.3 Bisimulation  Equivalence and Prebisimulation Preorders

Bisimulation equivalence provides a logical characterization of when two systems
are equivalent and is used to check statewise  isomorphism between two finite Kripke
models. Prebisinmlation preorders  similarly provide a logical characterization of when
one system minimally satisfies another. Informally, this means that bisimulation pro-
vides a notion of behavioral equivalence: two systems are equivalent if they exhibit the
same behavior, whereas prebisimulation provides a notion of behavioral relatedness: one
system exhibits at least certain behaviors exhibited or required by the other. In both
cases, a more abstract or higher-level system serves as a specification of a lower-level
one. Verification consists c~f showing that the lower-level model or ‘(itnplementation”
satisfies its specification by establishing the given relation between the two models.
For example, the correctness of a protocol can be established by showing that it is se-
mantically equivalent to its service specification by modeling both the protocol and its
specification as finite state machines and using equivalence-checking verification to es-
tablish the statewise, transition-preserving correspondence between the two finite-state
models. Various formal relationships have been proposed. In general, these relations
are either equivalences (bisimulations) or preorders  (prebisimulations) [CH89].

Milner’s Calculus of Communicating Systems (CCS29  ) [MiU19] forms the basis for
several of the “most visible equivalence-checking verifiers for concurrent systems. Pro-
cesses are defined as CCS agents that are given an operational semantics deflncd in
terms of transition relations. CCS processes may define an arbitrary number of subpro-
cesses,  in which case the transition graph may have infinitely many states. Although
some properties may be decidable in such cases, most interesting properties are unde-
cidable on agents that correspond to graphs with infinite state spaces. Automated tools
for analyzing networks of finite-state processes defined in CCS include the NCSU Con-
currency Workbench [CS96] and its predecessor, the (Edinburgh) Concurrency Work-
bench [CPS93], and the Concurrency Factory [CLSS96]. Both versions of the Concur-
rency Workbench support equivalence checking, preorder checking, and model checking
(for the modal mu-calculus). The NCSU Concurrency Workbench also provides diag-
nostic information if two systems fail to be related by either semantic equivalence of
preorder, and language flexibility that allows the user to change the system description
language [C S96]. The Concurrency Factory is also an integrated toolset,  but focuses
on practical support for formal design analysis of real-time current systems. This is
achieved in part through a graphical design language (G CCS),  a graphical editor, and
a graphical simulator [CLSS96]. In addition to a CCS-based semantics, GCCS has a
structural operational semantics [CLSS96, p. 400].

29CCS and related approaches are also referred to M process algebras.
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6.2.4 Utility of Finite-State Methods

The various approaches to finite-state verification outlined earlier are in theory very sin~-
ilar and in many cases itker-definable,  as noted in [VW86, CGK89,  CBK90]. In practice,
the approaches have led to the development of tools with often overlapping capabilities,
but different foci and strategies. For example, SPIN has been developed for modeling dis-
tributed software using an asynchronous process model; Mur@ and SMV have focused on
hardware verification Murq5 on asynchronous concurrent systems using explicit state
exploration and SMV on both synchronous and asynchronous systems using symbolic
model checking; and COSPAIl  has been driven by a top-down design methodology inl-
plemented  through successive refinement of (fundamentally) synchronous models and
has beclL used for both software and hardware design verification. In some cases, the
capabilities are complementary, and there is work on integrating different finite-state
verification strategies as done in COSPAN, which offers either symbolic- (BDD-based)
or explicit state enumeratioli  algorithms, as well as on integrating different approaches
in a single tool, as done in both versions of the Concurrency Workbench, which offer
equivalence checking, preorder checking, and model checking.

Finite-state methods offer powerful, automated procedures for checking temporal
properties of finite-state and certain infinite-state systems (Kripke models). ‘1’hey also
have the ability to generate cozmterezarnphx—ty pically in the form of a computation
path that establishes, for example, the failure of a property to hold in all states, and
witnesses--in the form of a computation path that establishes the existence of one
or more states in which a property is satisfied. Finite-state methods are least ef-
fective on large, unbounded state spaces, high-level specifications, and data-oriented
applications---areas in which deductive methods are more appropriate. For this rea-
S011, there has been increasing interest in integrating finite-state methods and deductive
theorem proving. This topic is revisited in Section 6.4.

6.3 Direct Execution, Simulation, and Animation

Direct execution, simulation, and animation are techniques used to observe the behav-
ior of a model of a system. Formal analysis, on the other hand, is used to analyze
modeled behavior and properties. In many cases, there are fundamental differences be-
tween these observational and analytical methods, including the models they use and
their expected performance. Typically, models used for verification cannot expose their
own inaccuracy and, conversely, models used for conventional simulation cannot con-
firm their own correctness [Lan96,  p. 309]. Models used for simulation of large systems
must be able to handle realistic test suites fast, since these suites may literally run for
weeks. This kind of efficiency is not a reasonable expectation in executable specifica-
tion languages. Formal verification techniques generally treat the notion of time as an
abstraction and largely avoid probabilities, whereas more concrete representations of
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time and probabilistic analyses play an important role in observational methods. Fi-
nally, direct execution, simulation, and animation show behavior over a finite number
of cases, whereas formal analysis can be used to explore all possibilities, the former
offering statistical certainty and the latter, mathematical certainty. Although some of
these differences are attenuated when “simulation” is considered in the context of for-
mal specification languages (for example, the models used for execution and simulation
typically coincide), others persist (for example, verification still proceeds by extrapola-
tion from a finite number of cases, rather than by mathematical argumentation over all
possible cases). The remainder of this section summarizes the notions of executability,
simulation, and animation in the context of formal methods.30

6.3 .1  Observat ional  Techniques

Some formal specification languages are directly executable, or contain a directly ex-
ecutable subset, meaning that the specification itself can be executed or run and its
behavior observed directly. For example, a logic based on recursive functions, such as
that,  used in Nqthrn [BM88]  and ACL2 [Kh!194],  supports direct execution and “sinm-
lation” on concrete test cases because it is always possible to compute the value of a
variable-free term or formula in the executable subset of these logics.  The following
quote from [KM94,  p. 8] describes the role of executability in the formalization of a
model of a digital circuit (the FM9001 ) in Nqthm.

[The Nqthm model] can be thought of as a logic sitnulator (without,
however, the graphic and debugging facilities of commercial simulators).
. . . Running [the model] on a concrete netlist31 and data involves simulating
in the proper sequence the input/output behavior of every logical gate in
the design . . .

The spccificat ion language for the Vienna Development Method (VDM),  VDM-SL, also
has a large executable subset, as well as tool support for dynamically checking type
invariants and pre and I)ost  conditions, and for running test suites against a VDM-
SL specification [VDM]. Similarly, the concrete representation of algorithms and data
structures required by most finite-state enumeration and model-checking methods (see
Section 6.2) make them ccmlparakde to direct execution techniques. Certain finite state
verification tools also provide ‘(simulation,” by exploring a single path through the state
space rather than all possible paths [H0191, DDHY92, ID93].

30 Planning and administrative trade-offs involving, for example, cost, available resources, criticality
of the system, and desired levels of formality, are discussed in the first volume of the guidebook [hTASA-
95a].

31 The  ,!netli~t,~ i$ aIL ~qth[ll  constallt that describes a tree of hardware nloduleS and their intercon-. .
nections  via named input/output lines.
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The dynamic behavior of specifications written in nonexecutablc  languages may be
studied indirect ly, by reinterpreting the specification in a (high-level) programming lan-
guage. Execution of the resulting program is referred to as an emulation or animation of
the specification. Some formal specification languages offer both a directly executable
subset and the option of user- or system-defined program text to drive animation of
nonexecutable  parts of the specification. Specifications written in a nonexecutable  lan-
guage using a constructive functional st~rle may be “executed” by exploiting a rewrite
facility (assuming one is available) to rewrite function definitions, starting from a par-
ticular set of arguments. This amounts to writing an emulator for the system being
modeled and may not he either possible or desirable. For example, making an entire
specification executable typically precludes using axioms to dispense with those parts
of a system or its environment that are not of interest or do not warrant verification.

Direct execution, simulation, and animation are not alternatives to more rigorous
formal analysis, but rather effective complements. For example, during the requirements
and (or) high-level design phase, executability can be used to probe the behavior of a sys-
tem on selected test cases, and deductive theorem proving can be usecl to exhaustively
establish its general high-level properties. in this type of strategy, executability pro-
vides an efficient way to avoid premature proof efforts and, conversely, to focus the more
rigorous (and thereby more expensive) proof techniques on the most appropriate behav-
iors and properties. This symbiotic use of different techniques is nicely illustrated in the
development of a formal specification of the Synergy File System using ACL2 [BC95a].
In this application, formalization of an ACL2 executable model, execution of the model,
and proof of an invariant about transitions in the model each revealed significant errors.

6 .3 .2  Ut i l i ty  o f  Observat ional  Techniques

The main advantages of executability are that it allows the specification and underly-
ing model to be “debugged, ” and it allows the specification to serve as a- “test oracle”
relatively early in the life cycle. Animation and emulation confer similar benefits. A
further advantage of executability is that it allows behavior to be observed and explored
in the same formally rigorous context as that in which the specification is developed.
Other documented roles for executability include post-implementation testing, as illus-
trated, for example, in post-fabrication execution of the FM9001 specification to test
the fabricated devices for conformance to the (verified) design [KM94, p. 9]. Although
this example represents a somewhat novel use of executability, it is potentially an im-
portant technique by means of which formal methods can make a unique contribution
to conventional testing regimes. The technology transfer potential of executability,
animation, and emulation is also worth noting. Because simulation, animation, and enl-
ulation are techniques familiar to analysts and engineers, they offer an effective vehicle
for integrating formal methods into ongoing system development activities. The VDM-
S1, study carried out at British Aerospace provides an interesting example of the role
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of executability in the integration of formal specification in a traditional development
process [LFE196].

6.4 Integrating Automated Analysis Methods

No single technique is effective across a wide range of applications or even across a sin-
gle application with disparate components or algorithms. Industrial-strength examples
typically require a variety of approaches, currently used as standalone systems, as illus-
trated, for example, in [M PJ94]. Rushby [Rus96]  argues that effective deductive support
for formal methods requires not standalone, but integrated techniques effective across
a broad range of applications. Shankar [Sha96] makes a similar argument, noting that
the “sheer scale” of mathematics necessary for formal methods argues for a unification
of verification techniques.

The three analysis techniques surveyed in this chapter- automated deductive nleth-
ods, finite-state methods, and simulation methods- have complementary strengths and
there is increasing interest in the synergistic integration of these techniques within a
uniform framework. Synergistic integration simply means that the resulting system
should be more than the sum of its parts. Logical frameworks, such as Isabelle [Pau88],
support the definition and construction of deductive tools for specialized logics, but do
not provide systematic support for coherent integration of different capabilities [Sha96].
The Stanford TEmporal  Prover (STEP) [Man94], which integrates model checking with
algorithmic deductive methods (decision procedures) and interactive deductive nmth-
ods (theorem proving) to support verification of reactive systems, is an example of one
strategy in the search for effective integration. The STEP system is interestillg because
it also combines powerful algorithmic and heuristic techniques to automatically gen-
erate invariants. A different approach has been used to integrate model checking and
automated proof checking in PVS [RSS95], where a BDD-based model checker for the
propositional mu-calculus is integrated as an additional decision procedure within the
proof checker.

The notion of integrated verification techniques introduced here provides a glimpse
of the direction verification technology is heading. One implication of this discussion
is the relative maturity of existing formal methods techniques, which offk!r effective
specification and analysis options for aerospace applications.

6.5 Proof of Selected SAFER Property

The property that no more than four thrusters may be fired simultaneously follows
directly from the detailed functional requirements of the SAFER system. Thruster
selection is a function of the integrated hand grip and A AH-generated commands.
The thruster select logic specified in Tables C.2 and C.3 is used to choose appropri-
ate thrusters based on a given integrated command. An initial survey of these tables
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might suggest that as many as four thrusters can be selected from each table, resulting
in as many as eight thrusters chosen in all. However, several additional constraints
render certain command combinations invalid. Furthermore, the table entries thenl-
selves  are interrelated in ways that limit the thruster count for multiple commands.
The four-thruster maximum follows directly from the combination of these two types of
constraint.

The four-thruster max property is fundamental and is explicitly captured as Re-
quirement 41, one of the avionics software requirements (see Sections 3.3 and C.2):

41. The avionics software shall provide accelerations with a maximum of four sinlul-
taneous thruster firing commands.

The four-thruster max property can be expressed as a PVS theorem as shown here.

I max.thrusters: THEOREM
F O R A L L  (a. in: avionlcs_inputs),  (a_st: a v i o n i c s - s t a t e ) : I

1- length(prop_actuators  (output(SAFER_control  (a_in, a_st)))) <= 4 I——————

The theorem asserts that for any input and state values, the outputs producedby
the SAFER controller, which include the list of thrusters to fire in the current frame,
obey the maximum thruster requirement. This claim applies to any output that canbe
generated by the model.

6 . 5 . 1  T h e  P V S  T h e o r y  SAFER.properties

Proof of themax_thrusters  theorem requires several supportillg  lenlrnas. These lemmas
and the theorem itself are packaged as the PVS theory SAFER_propert  ies, which is
reproduced here.
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————

SAFER_ properties: THEORY
BEGIN

IMPORTING avionics.model

A,B,C: VAR
tr: VAR
HCM,cmd: VAR
AAH : VAR
state: VAR
thr,U,V: VAR
act: VAR
BF,LRUD: VAR

axis_comnland
tran_command
six”_dof_command
rot_command
AAH_state
thruster..list
actuator-commands
thruster_list_pair

%% Only one translation command

only_one_tran(tr): bool =

can be accepted for thruster selection.

(tr(X) /= ZERO IMPLIES tr(Y) = ZERO AND tr(Z) = ZERO)
AND (tr(Y) /= ZERO IMPLIES tr(Z) = ZERO)

only_one_tran_pri:  LEMMA
only_one_tran(prioritized_tran_cmd(tr))

only_one_tran_int: LEMMA
only_one_tran(tran(integrated_commands(HCM,  A A H ,  s t a t e ) ) )

%% All  ca tegor ies  of  se lec ted  thrus ters  (BF vs .  LRUD and mandatory
% %  v s .  o p t i o n a l )  a r e  b o u n d e d  in s i z e  b y  t w o ,  w h i c h  f o l l o w s  d i r e c t l y
% %  f r o m  i n s p e c t i o n  o f  t h e  t a b l e s .

max_thrusters_BF:  LEMMA
length(proj_ l  (BF_thrus ters (A,  B,  C)) )  <= 2 A N D
length(proj_2(BF_thrusters  (A, B, C))) <= 2

max_thrusters_LRUD: LEMMA
length(proj_l  (LRUD_thrusters(A, B, C))) <= 2 A N D
length(proj_2(LRUD.thrusters(A,  B, C))) <= 2

—— .—.—..—.——— — — — .—  .——.—-— .——————..
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—- .———— ————————-——— —

YL Absence of translation commands implies no optional thrusters
%% will be selected.

no.opt_thr_BF: LEMMA
tr(X) = ZERO IMPLIES length(proj_2(BF_thrusters(tr(X) , B, C))) = O

no_opt_thr_LRUD: LEMMA
tr(Y) = ZERO AND tr(Z) = ZERO IMPLIES

length(proj_2(LRUD_thrusters(tr(Y)  , tr(Z), C ) ) )  =  O

% %  T o p  l e v e l  t h e o r e m s  e s t a b l i s h i n g  b o u n d s  o n  n u m b e r  o f  s e l e c t e d  t h r u s t e r s :

max_thrusters_sel:  LEMMA
only_one_trarI(tran(cmd)  ) IMPLIES

length(selected_thrusters(cmd)  ) <=  4

max_thrusters:  THEOREM
F O R A L L  (a_in: avionics_inputs), (a_st: avionics-state):

length(prop_actuators  (output(SAFER_control(a_in,  a_st)))) < =  4

END SAFER_properties

—— — — . .

TheSAFER-properties theory depends on other theories iutheSAFE  Rspecifica-
tiou, as shown inthe  graphof  the dependency hierarchyin  Figure 6.3. Onlythedepen-
dencyon the theory avionics-model is explicitly represented (iuthe  IMPORTING clause
in SAFER_properties).  The remaining dependency chains are established through sinl-
ilar clauses in the other theories.

The lemmas in SAFER_properties differ iu import. Some are used to decompose
the proof. Others express general  properties of the prob]em domain that are likely
to be useful in the proof of additional SAFER properties as well as in the proofof
max-thrusters. Annotations (indicated by the PVS comment character %) indicate
whether the lemma represents an intermediate proof step or a general property.

The mechanically assisted proof of the SAFER_properties theory consists of a
proof of the top-level theorem, max-thrusters, whose proof follows from the Iemmass
max-thrusters_sel and only-one-tran_int.  Each of these lemmas is, in turn, proved
in terms ofother lemmas from this theory. ThePVS theorem prover employs a sequent
calculus similar to that sketched in Section 6.1.3.l.2,  but mechanized at a considerably
higher level than that reflected in the proof hlSection6.1.3.3.  Section C.4.2.2 showsa
transcript from the proofof theorem max_thrusters. The proofcontains  only five steps
in the PVS theorem prover. Proofs of the remaining lemruas are similarly straightfor-
ward and require only a few steps. The single exception is max-thrusters_sel,  whose
proof iuvolvesa case analysis.
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6.5.2 Informal Argument for Lemma max.thrusters.sel

Consider, first, an informal argument for the max thrust ers-sel lemma. At most two
mandatory and two optional thrusters can be selected from each of the two thruster
tables. The argument proceeds by cases defined in terms of possible commands.

The first case concerns a translation command for the X axis.

● Case 1: No X command present. Inspection of Table C.2 shows that there will
be no optional thrusters selected in this case. There are two subcases, depending
on the presence of a pitch or yaw command.

o Case 1.1: No pitch or yaw commands. Inspection of Table C.2 shows
that no thrusters at all are selected in this case. At most four can come from ‘
Table C.3. Hence, the max thruster property holds.

o Case 1.2: Pitch or yaw command present. Inspection of Table C.3
indicates that no optional thrusters are chosen from this table. Hence, only
mandatory thrusters from each table are chosen, and, again, the number
selected cannot exceed 4.

● Case  2 :  X  command present . Because only one translation command is
allowed, it follows that no Y or Z command can appear. This, in turn, implies
that no optional thrusters are chosen from Table C.3. The subcases take into
account the possibility of a roll command.

o Case 2.1: No roll command. lf’ithout  a roll command, no thrusters are
selected from Table C.3. Hence, the max thruster property holds.

o Case 2.2: Roll command present. A roll command implies that T’a-
ble C.2 yields no optional thrusters. This leaves only mandatory thrusters
from each table, and the bound of four thrusters is satisfied.

The case analysis sketched in this informal proof can be directly formalized in F’VS.
The result ing proof is quite lengthy, as shown in the proof tree in Figure 6.4. As noted
earlier, the level of automation represented in this figure is higher than that illustrated
in Section 6.1.3.3.

Although it is certainly possible to use mechanized proof tools to verify informal
proofs in this way, it is often far more productive to exploit the strengths of a particular
tool to make the proof more automatic, more comprehensible, or more optimal with
respect to other desired metrics. This kind of optimization follows quite naturally as
one of the later steps in the inherently iterative process of developing and refining
a proof. Figure 6.5 shows a considerably simpler and more automated proof for the
max-thrusters–sel property.
command that packages many
proof of max-thrusters_sel.

This second proof exploits the high-level PVS GRIND
lower-level commands, thereby automating most of the
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Chapter 7

Conclusion

This guidebook has presented a discussion of the technical issues involved in the use of
forma] methods. The focus has been on using formal methods to analyze requirements
and high-level designs, that is, on a spectrum of activities that apply mathematical
techniques to formalize, explore, debug, validate, and verify software and hardware
systems. ‘1’he development of the SAFER specification has exemplified the process of
applying formal methods to aerospace applications.

TIIC  guidebook characterizes formal methods as an iterative process whose broad
outlines are determined by contextual factors. Effect ive use of this prc}cess involves
judiciously pairing formal methods with an application and its careful integration with
existing quality control and assurance activities.

7.1 Factors Influencing the Use of Formal Methods

Two types of factors influence the use of formal methods: administrative factors and
technical factors. Administrative factors- including project scale and staffing, inte-
gration of formal methods with traditional processes, and general project guidelines:
training, specification and documentation standards and conventions, and so 011-- are
discussed in Volume I of this Guidebook [NASA-95a]. Technical factors-–including
the type, size, and structure of the application; level of formalization; scope of formal
methods use; characteristics of available documentation, and choice of formal methods
tool- -have been the subject of this second volume of the guidebook. These technical
factors are summarized here.

● Type, Size, and Structure of the Application Formal methods are best suited
to the analysis of complex problems, taken singly or in combination, and less suited
for numerical algorithms or highly computational applications. Applications of
moderate size with a coherent structure that can be decomposed into subsystems
or components are typically most appropriate.

130
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. Level of Formalization Formal methods can be productively applied at vari-
ous levels of formality or rigor, ranging from the occasional use of mathematical
notation to exclusive use of semantically well-defined specification languages with
mechanized proof support.

● Scope of Formal Methods Use Formal methods can be effectively applied in a
variety of ways depending on which stages of the developmental life cycle, which
system components, and what system functionality are formalized.

● Documentation Formal methods benefit from the availability of adequate docu-
mentation. The most important characteristics are the level at which the require-
ments (high-level design) are stated, the degree to which they are explicitly and
unambiguously enumerated, the extent to which they can be traced to specific
system components, and the availability of additional information or expertise to
motivate and clarify their definition.

● Tool(s) Formal methods typically involve some level of mechanical support. The
choice of formal methods tool, if any, is determined by administrative factors and
the preceding technical factors (excepting documentation). Information on formal
methods tools is available from several databases, including those maintained by
Jonathon 130wen,  Larry Paulson, and Carolyn Talcott, respectively [Bowen, Pauls,
Talco].

7.2 The Process of Formal Methods

Contextual factors determine the broad outlines of formal methods use for a given appli-
cation. The substance of the formal methods process has been characterized in previous
chapters of this volume as a discipline composed of the following activities: character-
izing, modeling;,  specifying, analyzing, documenting, and lllaintaillillg/gelleralizi~lg.

●

●

●

●

Characterizing Synthesizing a thorough understanding of the application and
the applicat  ioxl domain, resulting in a working characterization of the application
and relevant par ts of its environment.

Modeling Selecting a mathematical representation expressive enough to formalize
the applicatioll  domain, while providing sufficient analytical power to explore,
calculate, and predict the behavior of the system.

Specifying Developing a specification strategy, formalizing the application in
terms of the underlying model and articulated strategy, and checking the syntactic
and semantic correctness of the specification.

Analyzing Predicting and calculating system behavior, challenging uuderlyiug
assumptions, validating key properties and invariants, establishing the consistency
of axioms, and establishing the correctness of hierarchical layers.
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● Documenting Recording underlying assumptions, motivating critical decisions,
docutnenting  rationale and crucial insights, providing additional explanatory ma-
terial, tracing specification to requirements (high-level design), tracking level of
effort, and collecting cost/benefit data.

● Maintaining/Generalizing Revisiting and, as necessary, modifying the specifi-
cation and analysis to predict the consequences of proposed changes to the mod-
eled system, to reflect mandated changes to the modeled system, to accommodate
reuse of the formal specification and analysis, or to distill general principles from
the formalization.

Although this linearization of the process is informative, it is important to keep two
additional facts in mind. First, applying formal methods is an iterative process. A
specification, like a conventional program, must be methodically developed, explored,
modified, and refined through many iterations until the result is free of syntactic and
semantic errors and captures desired characteristics and behaviors in a concise aud easily
communicated form. SeCO1ld,  the list is not prescriptive. Each project necessarily selects
the most appropriate subset of the activities listed above, namely those most consistent
with its mandate and the resources at its disposal.

7.3 Pairing Formal Methods, Strategy, and Task

Formal methods offer a diverse set of techniques appropriate for a wide variety of ap-
plications. Moreover, there arc many ways to use these techniques to model systems
and to calculate and explore their properties. The implications of this rich repertoire
of techniques and strategies is that the effective use of formal methods involves judi-
cious pairing of method, strategy, and task. For example, control-intensive algorithtns
for small finite systems, such as mode sequencing algorithms, are often most effectively
analyzed usiug state exploration, while general properties of complex algorithms, such
as Byzantine fault-tolerant clock synchronization, typically require efficient deductive
support for arithmetic in the form of arithmetic decision procedures. When an optimal
pairing of methods, strategy, and task is not readily apparent, a rapid prototype of
an aggressively downscaled  or abstracted model that preserves essential properties of
interest can help to focus the selection. Precedence, that is, techniques or strategies
successfully applied to similar tasks, can also serve as a guide in these cases.

A complex application is typically decomposable into subtasks. In such cases; it may
be productive to apply a combination of methods, or to apply a “lightweight” method
such as model checking, animation, or direct execution to specific or reduced cases of
all or part of a specification before attempting a more rigorous and costly analysis. For
example, [HS96]  reports the analysis of a communications protocol using a combination
of finite state exploration, theorem proving, and model checking. The protocol was first
manually reduced to finite state to allow certain safety properties to be checked using
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finite state exploration. These properties were then verified for the full protocol using
deductive theorem proving. The invariant used for the proof had tcl be strengt,hencd
through additional conjuncts  discovered incrementally during the proof process. Each
proposed new conjunct was checked in the reduced model, using state exploration before
it was used in the evolving proof. This iterative process eventually yielded an invariant
composed of 57 conjuucts.  Exploiting the knowledge gained in this exercise, a finite-state
abstraction of the original protocol was developed and nlcchanically verified. Finally,
properties of the abstraction were verified, using a model checker for the propositional
mu-calculus (see Chapter 6, Section 6.2.1.5). Although this particular example reflects
a demanding exercise carried out by expert practitioners, it is a nice illustration of the
productive interaction of combinations of techniques and strategies that are available
to expert and nonexpert alike.

7 . 4

Formal
control

Formal Methods and Existing Quality Control and
Assurance Activities

methods complement, but do not replace, testing and other traditional quality
and assurance activities. 1 This symbiotic relationship between formal methods

and traditional quality control and assurance methods derives from the fact that formal
methods are most effectively used early in the life cycle, on suitably abstract repre-
sentations of traditionally hard problenls,2 in order to provide complete exploration
of a model of possible behaviors. Conversely, traditional quality control and assurance
methods have proven highly effective late in the life cycle on concrete (implemented) so-
lutions to hard problems, in order to establish the correctness of detailed and extensive,
but necessarily finite behavioral scenarios.

There are many ways to exploit the complementarily between formal methods and
existing quality control and assurance activities. Some of these directly target formal
methods’ products. For example, [CRS96, SH94] describe a fully automatable structural
( “black box”) specification-based testing technique that complements implenlentation-
based testing. This technique derives descriptions of test conditions from a formal
specification written in a predicate logic-based language. The test conditions guide
selection of test cases and measure the comprehensiveness of existing test suites. Recent
conference proceedings, for example [COMP95,  ISSTA96],  attest to current interest in
developing automated methods that use formal specifications to generate test artifacts
for concrete implementations.

Other approaches reflect a more indirect use of formal methods. For example, formal,
or even quasi-formal models developed during the application of formal methods can be

1 Following Rushby  [Rus93b,  p. 144], quality  control  denotes “methods for eliminating faults” and
quality  assurance denotes “methods for demonstrating that no faults remain,”

21ncluding,  but not limited to, fault tolerance, concurrency, and nondeterminism, where capabilities
distributed across components must be synchronized and coordinated, aud where subtle interactions,
for example, due to timing and fault status, must be anticipated.
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used to facilitate traditional safety analyses. Leveson et al. report [MLR+ 96, p. 14] that
CL . . . the state abstraction and organization [of their state-transition models] facilitated

fault tree analysis.” A further input to traditional safety analyses might involve. . .
the formal specification and analysis of key safety properties. For example, it can be
demonstrated that a particular formal model satisfies (or fails to satisfy) given safety
properties, that proposed system modifications captured in a model fail to preserve
desired safety properties, or that an executable specification fails to satisfy a given test
suite. The results of these and other formal analyses can, in turn, be used to expose
areas of potential concern and, thereby, concentrate conventional testing activities. If
the results of the testing are then iterated back into the formal analysis, the increasingly
focused iteration can be used to refine requirements or high-level designs. The examples
cited here are suggestive, only. III general, the tighter the integration of formal and
conventional methods, the more productive the interplay between formal techniques
and traditional quality control and assurance activities.

7.5 Formal Methods: Verification Versus Validation and
Exploration

The real value of formal methods lies not in their ability to eliminate doubt, but in
their capacity to focus and circumscribe it.3

The use of formal methods is often seen as a form of absolute guarantee – a proof
of total correctness. However, as Rushby [Rus93b, pp. 74-75] notes, equating formal
verification with total correctness is doubly misleading in that it overestimates the
guarantee conferred by formal verification while it underestimates the value of the formal
verification process, per se.

The guarantee conferred by formal verification assures the mutual consistency of
the specifications at either end of a chain of verification, but necessarily fails to address
the adequacy of the underlying model, the extent to which the highest-level specifica-
tion captures the requirements, or the fidelity with which the lowest-level specification
captures the behavior of the actual system. The potentially contentious issue of the ad-
equacy of the model is typically resolved through extensive use, challenge, and review,
although there have been a few interesting attempts to characterize and automate the
selection of “adequate” models of physical systems [Nay95]. The fidelity of the upper-
and lowermost specifications in a chain of verification is established through validation.

The value of the process of formal verification lies not only, or even primarily, in the
end product—-that is, in a proof of correctness, but rather in the benefits accumulated
along the way. These benefits include many of those discussed in previous chapters of
this guidebook.
— ——

3Paraphrase of a comment from John Rushby.



ivAsA-G13-ool-97 135

● A detailed enumeration of all the assumptions, axioms, and definitions that pro-
vide the underlying basis for the verification and characterize the requirements and
properties whose satisfaction or utility in the physical world must be empirically
va] i dated.

● The validation of these assumptions and properties (for example, through proof
checking or model checking).

● The (early) detection of inconsistent requirements or of design faults. Most verifi-
cations fail, at least initially, and the information gained from these failed attempts
reveals unstated assumptions, missing cases, and other errors of interpretation or
omission. Although some of these errors would probably be caught by conven-
tional techniques, others are quite subtle and less likely to be exposed by informal
techniques or sampled behaviors.

● The ability to explore readily and reliably the consequences of additional or mod-
ified assurnptions, requirements, and designs, reinforcing and informing the nec-
essarily iterative process of developing large and complex systems.

● The ability to identify and develop reusable formal methods techniques, strategies,
and products, contributing to a cost-effective approach to the development of large
and complex systems.

● The improved understanding and identification of better solutions derived from
the intense scrutiny and discipline involved in the process of formalization and
formal analysis.

In summary, formal methods do not focus exclusively or even primarily on “proving
correctness’’ –-the verification activities associated with software implementations and
hardware layouts- but rather on exploring, debugging, and validating artifacts, such as
requirements and high-level designs, leading to a deeper understanding of their proper-
ties and assumptions, an earlier capability for calculating and predicting their behavior,
and a fuller appreciation of the consequences of modifying their structure, properties, or
environment. This guidebook has attempted to provide formal methods practitioners
with the information and insight essential to the productive use of formal methods.
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Appendix A

Glossary of Key Terms

This appendix contaim an alphabetized list of the acronynls  aud key terms used in tbc
body of the Guidebook.

AAH: Automatic Attitude llold
CEA: Control Electronics Assembly of the MMLJ
CTL: ~onl~)utational  ‘Tree Logic
DCU: Display and control Unit,
DRA: Data Itccordcr  Assembly
EMU: Extrave]licular  Mobility lJnit
EVA: Extravehicular .Activity
FOL: F’irst-Order (1’rcdicate)  Logic
FSSR: Nmctio)lal Subsystem Software Requirements
GPS: Global l)ositioning System
HCM: Hand Controller hlodule
HCU: IIatld Cc)ntroller  Unit
HHh!IU:  Hand Held klaueuverillg  Unit
IRU: Inertial Referellce  Unit
LCD: Liquid Crystal I)isl)lay
LED: Light E1nit ti118 Diode
LTL: Linear Temporal Logic
MIR: Mode Identificatioll  and Reconstruction
MMU: Manned hfaneuvering  Unit
OMT: Object h[odeling !khtliquc
PLSS: Primary Life Su~)])ort  Subsystem
PSA: Power Sup~)ly  Assembly
PVS: Prototype Verification System
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RHC: Rotational Iland Control of the i14hNJ
ROT: Rotational
SAFER: Simplified Aid for E\7A
SCR: Software Cc)st Reduction (Methodology)
TCC: Type  Correctness Collditions
THC: Translational Hand Control of the MMLJ
TRAN: Translational
VDA: Valve Drive Assemblies

A.2  Terms]

Assurance: T~lose activities that demonstrate the conformance of a product or
IMocess to a slwcified  criterion such as a functional requirement. Quality assurance
refers to those activities that focus particularly on conformance to standards or
~}roccdures  [NASA-92].

axiom: A statement or well-formed formula that is stipulated or assumed rather than
proved to be true through the ap~)lication  of rules of inference. The axioms and the
rules of inference togetlwr provide a basis for proving all other theorems. Axioms
are typically identified as logical or ~wnlogical. The latter deal with specific domain
information, while the former characterize logical properties. A given formal system
may have several (different) azion~atization<s.

formal logic: l’he study of deductive argunlent, that focuses on the form, rather than
the content of the argument. The central concept of formal logic is that of a valid
argun~ent:  if the prenlises are true, the corlclusion  nlust also be true.

formal methods: A varied set of techniques from formal logic and discrete nlatllen~at-
ics used ill tile design, specification, and verification of computer systems and software.

function: A rule ~ that assigns to every element z of a set X, a unique elelnent  g of a
set Y, written y = ~(x). -X is called the domain and Y the range (or codomain).  For
example, the area of a circle, y, is a function of the radius, x, written g == j(x) = nr2.
A function with domain A’ aud range Y is also called a mapping or map from X to Y,
writ ten f: X’ ~ Y. A function that maps every element of its domain to an element
in its range is said to be total.  A futlctioll  that maps some elements of its domain to
elements of its range, leaving others undefined, is said to be partial.

1 Material from [DN’89] has been  used in SOItle of the fo)low’ing definitions
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functional: A function that takes a set of functionsas  domain and asct of functions
as range. For cxanqdc$  tllc differential operator d/d~  is a functional of differentiable
functions j(x).

model: (1) In logic, an iuterprctation, 1, of a set of wwll-formed  formulas of a formal
language such that, czacll men~bcr of the set is true in 1. (2) A system of definitions,
assumptions, and equations set u]) to rc~)rescnt  a~ld discuss physical phenomena and
S-ystcms.

model theory: The study of the interpretations (nlodels)  of fornlal systenls,  especially
the notions of logical consequence, validity, co]npleteuess,  and soundness.

mu-Calculus: !t’hc J1-calculus is a qualltified  Boolean logic with least and greatest
fixed-point, ol)crators.

parsing: A form of analysis that detects syntactic inconsistencies and anomalies,
includiug nliss~)elled keywords, ~nissiug  deliluiters,  and ullbala~lced brackets or lJaren-
theses.

power set: ‘The ~)ower set of a set A is the set of all sets included in A. If a set has
n elements, its power set will have 27~ elements. For example, if a set S = {a, b}, then
the power set c)f S, P(S), is the set {0, {a}, {6}, {a, b}}.

proof: A chai~l  of reasonitlg  usiug rules of inference and a set of axioms that leads to
a conclusion.

proof theory: The study of proofs and provability in forn~al languages, including no-
tions of deducibility, indepcndcuce,  sinl~)le  conlplctelless,  and, particularly, consistency.

quantifier: A logical operator that binds a variable in a logical formula and is used to
indicate the quantity  of a pro~)osition,  for example, the univeral quantifier V (read “for
all” ), and the ezistentiai  quantifier 3 (read “there exists”).

requirements: The set of conditions or essential, necessary, or desired capabilities
that must be met by a systenl  or systenl  component to satisfy a cent ract, stalldard, or
other forn~ally implied docutnent  or description.

rule of inference: A rule in logic that deflues  the reasoning that determines when
a conclusion may be drawn from a set of premises. In a formal system, the rules of
inference should guarantee that if the premises are true,  then the conclusion is also true.
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specification (formal): A charackrization  of a planned or existing system expressed
in a formal la~lguage.

testing: Process of exercising or evaluating software by manual or automated mealls
to demonstrate that, it satisfies specified requirements or to idc!ntify  differences between
expected ancl actual results [NASA-92].

trace: A function fronl  time to a given ty~jc of ~’alue, where tinle represents, fo~
exanlple, a franle, cycle, or iteration count,.

t ypechecking:  A fornl of analysis that det ecks semantic inconsistencies and auonlalies,
including undeclared naules and anlbiguous types.

validation: Tile ~)rocess by which a delivered system is demonstrated to satisfy its re-
quirements by testing it in execution. Informally, dcmonstrat  ing that the requirements
arc right.

verification: The process of deternlining  whether each level of a specification, and the
final systeln  itself, fully alld exclusively itnplements the recluirenlents  of its superior spec-
ification. Infornlally,  demonstrating that a systenl is built according to its requirenlents.
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Further Reading

This appendix contains suggestions for further reading, arranged by topic.

B.1

●

●

●

●

●

●

●

Technical 13ackground: Mathematical Logic

Peter B. Andrews.  An Introductio71 to Logic and Type Theorg: To Truth through
Proof.  Academic Press, New York, NY, 1986.

,Jon Barwise. “An introduction to First-order Logic.” In Jon Barwise,  editor,
Handbook of Mathematical l,ogic, Volume 90 of Studies in Lo@c and the Foun-
dations oj Mathematics, Chapter Al, pages 5-46. North-Holland,
Holland, 1978.

H. F;. Endcrton. A Mathematical Introduction to Logic. Academic

Amsterdam,

Press, 1972.

David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts
and Monographs in Computer Science. Springer-Verlag, NTew  York, ATY, 1993.

I)ov M. Gabbay and Franz Guenthuer,  editors. Handbook of Philosophical Logic-
l~olumc 1: Elements oj Classical Logic, volume 164 of Synthese Library. D. Reidel
Publishing Company, Dordrecht, Holland, 1983.

Dov M. Gabbay and Franz Guenthner,  editors. Handbook of Philosophical Logic-
Volurne  II: Extensions of Classical Logic, volume 165 of Synihese  Libravg.  D.
Reidel  Publishing Company, Dordrecht, Holland, 1984.

Elliott Mendelscm.  Introduction to h~athenlatical  Logic. D. Van Nostrand Com-
pany, The University Series in Undergraduate Mathematics, 1964.
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● Mark Ryan and hlartin Sadler. ‘Waluaticm Systems and Consequence Relations.”
In S. Abramsky, Dov M. Gabbay,  and T. S. E. Lfaibaum,  editors, H a n d b o o k
of Logic in Computer Science; VolunLe  1 llackground:  Mathematical Structures,
pages 1-78. Oxford Science Publications, Oxford, UK, 1992.

. Joseph R. Shoenfield.  Mathematical Logic. Addison-Wesley, Reading, hIA, 1967.

● Johall  van Bentham ancl Kees l)octs.  Higher-order Logic. In Dov h~. Gabtray  and
Franz Guenthner, editors. Handbook OJ Philosophical Logic- VolunZc  I: Elements
of Classical Logic, Chapter 1.4. Synthese  I,ibrary,  D. Reidel,  1983, pages 275-329.

B . 2  Specificatiori

● J. P. Bowen.  Formed Specification and Documentation Using Z. International
Thomson Computer Press, 1996.

● Dines Rjmner  and Cliff Il. Jones. J’ormal  Specification and Software Development.
Prentice Hall International Series in Computer Science, 1986.

● John V. Guttag  and James J. Horning with S. J. Garland, K. D. Jones, A. h40dct.
and J. M. Wing. Larch: Languages arid 7001s for Formal Speci$cation.  Texts and
hlonographs  in Computer Science. Springer-Verlag,  1993.

● Ian Hayes, editor. Specification Case Studies. Prentice Hall International Ltd.,
1987.

● Michael Hinchey and S. A. Jarvis.  Concurrent Systems: Formal Development in
CSI’. McGraw-Hill International Series it] Software Engineering, 1995.

● Cliff B. Jones. Systematic  Software Dezre/opn~ent  Using VDJ4.  Prentice Hall In-
tcrnat ional  Series in Computer Science, second edition, 1990.

● Kevin Lane. The B Language and Method: A G’uide to Practical Formal Devel-
opment. Springer-Verlag FACIT Series, h!ay 1996.

● J. M. Spivey. Understanding Z: A Specification Language and its Formal Sentan-
tics. Canlbridge Tracts in ‘1’heoretical Computer Science 3. Canlbridge  University
Press, 1988.

B.3 Model  Checking

● Edmund Clarke and Robert, Kurshan. “Computer-Aided Verification.” IEEL
Spectrum, Volume 33, No. 6, June 1996, pages 61-67.
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s G. J. Holzmanu. Design and Validation of Computer Protocols. Prentice Hall
Software Series, 1991.

● Robert P. Kursllall.  Con~puter-Aided Verification of Coordinating Processes.
Princeton Series in Computer Science. Princeton University Press, 1994.

● Kenneth L. McMillan. Symbolic  lblodel  Checking. Kluw’er Acadenlic Publis]lers,
1993.

B.4 Theorem Proving

● R. S. F30ycx and J S. Moore. A Contputatiofial  Logic. Academic Press, 1979. .

● R. S. ?30ycr and J S. Moore. A Computational Logic Handbook. Academic Press,
1988.

● Ala]] Ilundy.  The Computer h~odel!ing oj Mathematical Reasoning. Academic
Press, 19S3.

. M. J. C. CTordcm and T. F. h4elham,  editors. lntroducfion to HOL: A Theorem
Proving Environment for ~fighcr-order  Logic. Cambridge University Press, 1993.

● l,awrence Paulson. “I)esigning  a Thcoren~  Prover.” In S. Abratnsky and I)OV M.
Gabbay and T. S. E. Maibautn, Handbook oj Logic in Computer Science; Volume
2 Background: Cornputationol  Structures. Oxford Science Publications, Oxford,
UK, 1992, pages 415-475.

● Larry Wos and FLOSS Overbeek and Ew’ing  Lusk and Jim Boyle. Automated Rea-
soning: Introduction and ApplicatioT~s,  h4cGraw-Hill,  1992.

B.5 Models of Computation

● C. A. R. IIoare.  Communicating Sequential Processes. 1“’renticm Hall Interna-
tional Series in ~omputer  Science, 1985.

● K. Mani Chandy and Jayadev Misra.  Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

● E. W. Dijkstra. A Discipline oj Programming. Prentice-Hall, 1976.

● D. Gries. The Science of Programming. Springer-Verlag,  1981.

● R. Milner.  Communication and Concurrency. Prentice-Hall,  1989.

● Zohar Manna and Richard Waldinger. l’he  Deductive Foundations of Computer
Programming. Addison-Wesley, 1993.
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B.6 Applications and overviews

● Edmund Clarke and Jeanllette  Wing. J’07mul  f14ethods:  State of the Art and Future
Directions. Report  of the ACM Workshop on Strategic Directions in Computing
Research, Formal Methods Subgroup. Available as Carnegie  Mellon University
Technical Report CMI-J-CS-96-I  78, August 1996.

. Dan Craigen,  Susan Gerhart,  and Ted Ralston. An International Survey of In-
dustrial Applications oj Formal i14ethods; Volume  1: Purpose, Approach, Analysis
alLd  Conclusions; Volume  2: Case Studies. hTational  Institute of Standards and
Technology, IWST  GCR  93/626, 1993.

● C. N’eville Dean atd Michael Hinchey, eds. Teaching and Learning Formal fl4eth-
ods. Academic Press, International Series in Formal Methods, 1996.

● N4. G. Hinchey  and J. P. Bowen, editors. Applications oj Formal i14ethods. Prentice
Hall International Series in Computer Science, 1995.

● IEEE Con@er, Special lSSUC ol~ Formal Methods. Volume 23, Number 9,
September, 1990.

● 1EE13  Sojtti)are,  Special Issue on Formal Methods. Volume 7, N’umber 5. Septenl-
ber, 1990.

. IEEE Transactions on Sojtware  Engineering, Special Issue on Formal Methods in
Software E1lginecring.  Volume 16, Number  9, Sq)tember,  1990.

● H. Saiedian,  ed. “An Invitation to Formal hfethods.” IEEE Co7nputer,  Volume
29, Number 4, April 1996, pages 16-30.

B.7 Tutorials

● Ricky W. Butler. An Introduction to Requirements Capture lJsing PVS: Specifi-
cation of a Sin@e Autopilot. NASA Langley Research Center, hTASA Technical
Menlorandum 110255.1996.

. J. Crow and S. Owre  and J. Rushby  and N. Shankar and M. Srivas. “A Tu-
torial Introduction to PVS.”  Presented at IEEE Computer Socic!ty Workshop
on Industrial-Strength Formal Specification Techniques (W IF T’95), Boca Ftaton,
Florida, 1995.

● Stuart R. Faulk.  Sojhoare  Requirements: A Tutorial. NTaval  Research Laboratory.
NRL Memorandum Reljort No. 5546-95-7775, November, 1995.
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Chris George. “1’hc RAIS1’J S~Jccification l,anguagc:  A Tutorial,” In l~~J4 ’91:
Formal Software  Development  Methods, S. Prchn and W. J. Toetenel, editors.
Springer-1’er]ag  Lecture Notes in Computer %icnce,  Volume 552, Octobm  1991,
~mges  238 319.

John Rushby and David M’. J. Strillger-Calvert. A Less Elementary  lhtorial
for the PIZS Specification and I’crificution  System, SRI, International Techtlical
Rcl)ort No. SRI-CSI,-95-1(),  July 1996.

17. Stavridou and A. Boothroyd  and 1’. Bradley and B. Dutertre  and L. Shacklctou
and R. Smith. “Formal Methods atld Safety Critical Systems in F’racticc.” IIL l~igh
lntegritg  Systems, Volume 1, No. 5, 1996, pages  423-445.

Debora  M’eber-Wulff.  “Proof Movie A Proof with the Boyer-hfloore  Provm.”  Ili
Formal Aspects oj Computing, Volume  5, No. 2, 1993, pages 121-151.
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Extended Example: Simplified
Aid for EVA Rescue (SAFER)

The example presented in this appendix is based on NASA’s Simplified Aid for EJTA
Rescue  (SAFER). SAFER is a new system for free-floating astro~laut propulsion that is
intended for use on Space Shuttle missions, as well as during Space Station construction
and c)peration.  Although the spcxificat  ion attempts to capt urc as much as possible
of the actual SAFER design, certain pragmatically motivated deviations have been
unavoidable. Nevertheless, the SAFER example contains elements typical of many
space vehicles and the conllmterized systems needed to control them.

C. I Overview of SAFER

SAFER is a small, self-contained, backpack propulsion system enabling free-flying nlo-
bility for a crewmember engaged in extravehicular activity (EVA) that ILas evolved as
a streamlined version of A’ASA’s earlier AIanned  Maneuvering Unit (hIhflU)  [h4MU83].
SAFER is a single-string system designed for contingency usc only. SAFER offers suf-
ficient propellant and control authority to stabilize and return a tumbling or separated
crewmember, but lacks the propellant capacity and systems redundancy provided with
the MMU. Nevertheless, SAFER and the MMU share an overall system concept, as well
as general subsystem features. The description that follows draws heavily on the SAFER
Operations Manual [SAF’ER94a]  and on the SAFER Flight Text Project development
specification [S AFER94b], excerpts of which have been included here as appropriate.

C.1.1 History, Mission Context, and System Description

SAFER is designed as a self-rescue device for a separated EVA crewmember  in situations
where the Shuttle Orbiter is unavailable to effect a rescue. Typical situations include
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w]lcnever  the (lrbiter  is docked to a large payload or structure, such as the Russian .Mit
Space Station or the International Space Station Alpha. A SAFER device would be worn
by every crewnmnber during these types of EVAS. As noted in [W1394], a crewmenlber
engaged in EVA, who beconles separated fronl an Orbiter or a space station, has t Ilree
basic o~)tioxls: grappling the Orbiter or station immediately using a “shepherd’s crook’>

dcvicc, rescue by a second crcwnwnlber  flying an hlMU (Manned Maneuvering Unit)*
or self-rescue using a ~mopulsive  systenl.  ‘1’hc  first option is xlot realistic in all situations;
it assunles a near-optinlal  res~)onse by a tutnbling astronaut. !t’hc second option is also
unrealistic, in this case because it assunles constant availability of both the hIhILJ  and
the second crewmembcr  during all EVA, since  reaction time is critical to successful
rendezvous with a drifting crewmember. The third option, a pro~)ulsive self-rescue
system, is the nlost viable and therefore the one ultimately selected.

As described in [W1393],  the simplest self-rescue system is the Hand-Ileld hla-
IIcxlvering Unit (H Hh!IU) or ‘(gas gun” fiow’n on Gemini  and Skylab, and the “Crew’
Propulsive Device,” a redesign of the Genlini  HHhl  U flown on the SI’S-49. Tests on
t hcsc units indicated that the HHhl Us were adequate for short  tralHlat  ions, hut re-
quired the crewmembcr  to visually determine and effectively nullify tumble rates about
all three axes a challenging proposition even with good visual cues. As a result, rec-
ommendations based  on the STS-49 tests included an automatic detumble capability
for all self-rescue devices.

While the H HMU lacked automatic det umble and other capabilities necessary for a
general-purpose self-rescue system, the MhIU was too well-endowed. The h4MU per-
formed the first self-propelled untethered EVA during the STS-41B mission in 1984,
part ici~)ated  in the Solar h4axin~utn  Mission spacecraft repair on a subsequent 1984
shuttle flight, and was used to capture the Palapa II-2 and the Westar-VI conmnmi-
cat ions satellites on yet another shuttle flight that same year [lf’B94,  p. 4]. IIowever,
the MMU’S versatility, redundancy, and physical bulk made it unsuited as a general-
purpose self-rescue device. hTevcrtheless, so many LIMU features have been incor])o-
rated into SAFER (ranging from the hand controller grip design to the gaseous-nitrogen
(GN2)  recharge-port quick-disconnect and the GNzpressure  regulator/relief valve), that
SAFER has been described as a “mimimized derivative” of the hIMU [WB94,  p. 2].

SAFER fits arouncl  the Extravehicular Mobility Unit (Eh!IU)  primary life support
subsystem (PLSS) backpack without limiting suit mobility (Figure C.]). SAFER uses
24 GNT2thrusters  to achieve six degree-of-freedom maneuvering control. A single hand
controller attached to the EM(J disj)lay  and control module is used to control SAFER
operations. Propulsion is available either on demand, that is, in response to hand con-
troller inputs, or through an automatic attitude hold (AAH) capability. Hand controller
inputs can command either translations or rotations, while attitude hold is designed to
bring and keep rotation rates close to zero. SAFER’S propulsion system can be recharged

10r, similarly, by a robotic-controlled MLIU. IIowever,  such a system  has apparently not yet been
developed and is not likely to be available in the near-term.
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during a~l E\~Aitl  tl~c Orbiter l~ayload bay. The SAFEIl  unit weighs  aplJ1’oxi1tlately85
pounds and folds forlaumh,  landing, and on-orbit stowage  iuside the Orbitmairlock.

C. 1.2 Principal Hardware Components

l’hc SAFER flight, unit consists of three assemblies: the backpack propulsion nlodule,  the
hand controller Inodule  (HCM),  and a replaceable battery pack. SAFER also requires
several items of flight  support equipment during a Shuttle mission. For the purpose of
tliis discussion, only the pro~)ulsion  and hancl controller modules need be included.

C.1 .2.1 Backpack Propulsion Module

The propulsion nlodule is the prinlary assembly of the SAFER system, attaching directly
to the EMIJ PLSS back~)ack. Figure C.2 shows the structures and mechanisms contained
within the propulsion module. Four subassemblies are identified: main frame structure,
left and right tower asscmhlics, ancl the aviollics  box. A lightweight, aluminum-alloy
frame holds SAFER components, while external surfaces are formed by an outer alu-
minuln ski~l. With the exception of tl]c u~)lwr tluwstms  mounted to the tower assemblies,
all propulsion subsystem components are housed in the main frame.

The tower assemblies have hinge joints that allow them to be folded for stowage.
Towers are unfolded and at tachccl  to I’LSS interfaces in preparation for an EVA. Latches
on the towc!rs  hold SAFER firmly to the 1’1,SS. Hinge joints accommodate GNz tubing,
electrical power, and signal routing to the upper thrusters.

Housed i]] the avionics box are tile control electronics assembly, inertial reference
unit,, data recorder assembly, and power supply assembly. The aviouics  box is attached
to the bottom  of the ~naill fralne, as depictec]  ill Figure C.2. Data and lJower conllectors
provide an itltcrface  to tl]c ruain frame. Connectors are also provided for the HCh4
umbilical and ground servicing equipment.

Within the nlai~l frame, IIigll-pressure  GN2 is stored in four cylindrical stainless-steel
tanks. Pressure and t cvn~wrature sensors are placed directly adjacent to the tanks and
these ~jaralneters are dis~)laycxl  to the SAFER crewmember on the IICh4. Other com-
ponents at t ached to the main G N2 line are a nlanual isolation valve, a quick-disconnect
recharge port, a~l integrated ~n’essure  regulator and relief valve, and downstream pres-
sure and tenllxxature  scwsors.

After passing througl]  the regulator/relief valve, (3N2 is routed to four thruster nlan-
ifolds,  each contai~li~lg  six electric-solenoid thruster valves. A total of 24 thrusters is pro-
vided, with four t]lrusters  ~)ointing  in each of the *X, +Y, and 3:Z directions. Thruster
valves open wllml commanded by the avionics subsystem. When a valve opens, GNT2
is released and ex~ )auded  through the t hruster’s conical nozzle to provide a propulsive
force. The avionics subsystem can command as many as four thrusters at a time to
~Jrovidc motion with six degrees of freedom (+X, + Y, +Z, +roll,  +pitch,  and +yaw).
Figure C.3 illustrates tllc! thruster layout, designations, and directions of force.
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C.1.2.2 Hand Controller Module (HCM)

A SAFER crewmember controls the flight unit and monitors its status by means of the
hand controller module (HCM). Two distinct, units are found in the HCM: a display
and control unit, and a hand controller unit. Both units are mounted together, as shown
in Figure C.4, with all internal com~ector joinit~g the two units electrically.

Various displays and switches are located on the display and colltrol unit and po-
sitioned so that, they can be viewed from any head position within the EMLJ  helmet.
‘1’hese displays and switches  i~dude

1. Liquid crystal display. A 16-charactcx,  backlit I,CD displays prom~)ts.  status
information, and fault messages to the crewmemtwr.

2. Thruster cue light. A red I.ED lights wl)cnever  a thruster-on col~dit  ion is
detected by the control software. q’his light is labeled “THR.”

3. Automatic attitude hold light. A green LED labeled “AAH” lights whenever
attitude hold is enabled for one or more  rotatiorlal  axes.

4. F’ower/test  switch. A three-~)osition toggle switch labeled “PWR” is used to
power on the flight, unit and initiate self-test functions. The tlmee positions are
“O~F,” “OhT,” a~ld “~$j~’.”

5. Display proceed switch. A tllrec-l)osition,  l[lol~lerltary-col]tact  toggle switch is
used to control nlessage displays on the LCD. T’his switch, which is labeled “DISP’)

on tile  HChI, is norlnall.y in the ceilter null ~Josition.  When ~Juslled u~)/dowll,  the
switch causes the LCD to display the j)revious/next  parameter or nlessage.

6. Control mode switch. A two-position toggle switch is used to configure the
hand controller for either rotational or translational commands. This switch is
labeled ‘(MODE,’ ) with its two positions labeled “ROT” and “q’RAhT.”

The hand controller grip is compatible with an Ehl[J glove. It is mounted on the
right side of the HCM with au il~tegral  push-button switch for initiating and terminating
AAH mode. A four-axis mechanism having three rotary axes and one transverse axis is
the heart, of the hand controller. A command is generated by moving the grip from the
center null position to mechanical hardstops on the hand controller axes. Comtnauds
are terminated by deliberately returning the gri~)  to its center position or by releasing
the grip so that it automatically springs back to the center.

As shown in Figure C.5, with the control mode switch in the TRAN position, +X,
*Y, *Z, and +piteh  CO1lmlatlds  are available. +X commands are generated by rotating
the grip forward or backward, *Y commands by pulling or pushing the grip right or left,
and *Z commands by rotating tile grip down or up. +pitcb conlnlaIlds  are generated
by twisting the grip up or down about the hand controller transverse axis.
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As shown ill Figure C.6, with the control mode switch in the 1U3T position, +roll,
+.pitch, +-yaw, and *X commands are availal)lc. troll commands are generated by
rotating the grip down or up (same motion as the +2 commands in TRAhT mode).
+yaw  commands are generated by pulling or pushing the grip right or left (same motion
as the +Y comnlands in TRAhT n~ocie). The ipitcl} and *X conmands are .generatcd
as in TltAhT nlode, thus nlaki~lg  then] availat)lc ill botl~ l’FtART and ROT nlodes.

An electrical unlbilical  connects the 13CIvl to the propulsion nlodule, attaching to a
connector on the avionics box. This un~bilical  is connected prior to launch and is not
intended to be disconnected in fright.

C.1.2.3  Battery  Pack

The battery pack, which provides power for all SAFEFi  electrical components, connects
to ttle bottom of tile propulsion module, as shown in Figure C.2. Two separate battery
circuits are found in the battery pack, both containing multiple stacks of 9-volt alkaline
batteries. One battery circuit powers the thruster valves, offering 30-57 volts to the
power supply assembly, which produces a 28-volt c)utput  for opening valves in lnllses
of 4.5 milliseconds duration. Energy capacity is sufficient to open the thrusters 1200
times and thereby drain the GN2 tanks four times. The other battery circuit powers the
aviollics  subsystem (i.e., the remaining electrical components), producil]g  16-38 volts
for the power supply for a cumulative power-on time of 45 minutes. A temperature
sensor in the battery pack is used for monitoring purposes. Flight procedures allow for
bat tery pack changing during an EVA.

C.1 .2.4 Flight Support Equipment

Besides the SAFER flight unit, several types of flight support equipment are needed
during SAFER operations. These items include a special plug to attach the hand
controller module to the EMU display and control module, a recharge hose for GN2 tank
recharging during an EVA, the Orbiter’s GNT2 system to provide GNT2 via the recharge
hose, a SAFER recharge station having handrails and foot restraints to facilitate the
recharging proceclure,  an airlock stowage bag for storing SAFER v’hen not in use, and
a battery transfer bag for storing extra battery packs during an EVA. None of these
supl)ort items will be considered any further in this appendix.

C.1.3 A v i o n i c s

SAFER’s avionics subsystem resides mostly in the backpack module beneath the propul-
sion components. Included are the following assemblies:

1. Control Electronics Assembly (CEA).  Found in the avionics box, the CEA
contains a microprocessor that takes inputs from sensors and hand controller
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2.

3.

4.

5.

6.

switches, and actuates the aplJrolJriate thruster valves. The CEA has a serial
bus interface for tllc IICh4 umbilical as well as an interface for ground support
ecluipment.

Inertial Reference Unit (IRU).  Central to the attitude hold function, the
lRU senses  angular rates and linear accelerations. Three quartz rate sensors, rate
noise filters, atld associated rate measurement electronics provide a~~gular rate
sensing up to +3(I degrees per second. A separate sensor exists  for each angular
axis (roll, pitch, ya~v). In addition, a temperature sensor is paired with each of
the three rate sensors, enabling the avionics software to reduce rate se~lsor error
caused by temperature changes. An accelerometer senses linear acceleration up
to + 1 g along each linear axis (X, Y, Z). l’hese  accelerations are recorded by the
data recorder assembly for post-flight analysis.

Data Recorder Assembly (DRA).  SAFER flight performance data is collected
by the DRA. Saved parameters include data from rate sensors, accelerolueters,
pressure and tenll)erature  transducers, and battery voltage sensors. The I)RA
also records hand controller and AAII commands and thruster firings. Data may
he recorded at one of three rates: 1 Hz, 50 IIz,  or 250 Hz. A suitable rate is chosen
automatically based on which control mode is in use.

Valve Drive Assemblies (VDAS). Four valve drive assemblies are used to
actuate the CIIiZ  thrusters. A VL)A is located with each cluster of six thrusters
(in each tower and 011 the left and right sides of the propulsion module main frame).
VDAS accept, firing commands from the CEA and apply voltages to the selected
valves. V1)AS also sense current flow through the thruster sole~loids,  providing a
discrete signal to the CEA acknowledging thruster firing.

Power Supply Assembly (PSA). Regulated electrical power for all SAFER
electrical conlpol)ents is produced by the PSA. Two battery circuits provide input
power, aud tlie I’SA serves as a siugle-poillt ground for all digital and analog  signal
returns,

Instrumentaticm  Electronics. A variety of sensors is included in the SAFER
instrutnoltation  electronics. A subset of the sensed parameters is available for
dis~)lay  by the crewmember. Table C.1 lists all the SAFER sensors.

C.1.4 S y s t e m  S o f t w a r e

The avionics soft ~vare is responsible for cent rolling the SAFER unit in response to
crewmember commands. ‘TWO principal subsystems comprise the system software: the
maneuvering control subsystem and the fault detection subsystem. hfaneuvering control
includes both commanded accelerations and automatic attitude hold actions. Fault
detect io~l supports in-flight operation, pre-EVA checkout, and ground checkout.
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I’aranleter n~exsured Sensor type IJisplayec]?—-——
‘GN2 tankpressure

—.
Pre;sure 1’

GNT2 tank tenlpcratule T’emperaturc Y
(3N2 regulator prcssuw l’rcssurc Y
GNT2 regulator temperature lelnpcrature Y
Roll rate Angularrate 1’
I’itcll  rate Angular rate y

Yaw rate Angular rate Y
Electronics battery volts Volt age Y
Valve drive battery volts Voltage y

l]attery tenlperature l’enlpcrat  ure Y
X acceleration Linear acceleration N ‘“–
Y acceleration Litlear acceleration N
‘Z acceleration Linear acceleration N

Roll rate sensor tem~)crature lhnperature N
Pitch rate seusor tenlperature q’enlperature N
Yaw rate sensor tenlperature Tenlpcrature N—.

TableC.1: SAFER  scllsor coxll~)lelrlellt.
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C.1 .4.1 Software Interfaces

l)igital interfaces to SAFER components enable the CFIA’S nlicroprocessor  to achieve
control. Four classes of ill~)uts”  are nlonitored and accepted by the avionics software:

1. Hand controller switches. Indications of switch operation cover both toggle
smritclles  and those cmbe,dded  within tile Iland grip n~ecllanisn].

2. Avionics transducers. Sensor  inputs are converted fro~ll  analog to digital fornl
before software sanlpling.

3. Thruster-on discrete. This input is a binary indication of at least one thruster
valve Lcing open.

4. Serial line. Ground checkout operations send data through this input.

Similarly’, four classes of outlmts are generated by the avionics software:

1. Hand controller displays. Both L131)s  and a 16-character LCD display are
included to present status to the cre~vmember.

2. Thruster system. Digital outputs arc delivered to the valve drive assenlblies  to
actuate individual thruster valves.

3. Data recorder system. Selected data items arc recorded for post-flight analysis
011 the ground .

4. Serial line. Ground checkout operations receive data through this output.

C.] .4.2 Maneuvering Control Subsystem

Figure C.7 breaks down the SAFER software architect urc in terms of its primary mod-
ules. ‘1’hose modules comprising the maneuvming control subsystem collectively realize
SAFER’S six degree-of-freedom propulsion capability. Both rotational and translational
accelerations will be commanded by the software. Rotations resulting from the AAH
function arc invoked automatically by the software in response to rotation rates sensed
by the inertial reference unit. Special cases result from the interaction of tile AAH
function and explicitly commanded accelerations.

Translation commands from the crewmembcr are prioritized so that only one trans-
lational axis receives acceleration, with the priority order being X, Y, and then Z.
Whenever possible, acceleration is provided as long as a hand controller or AAH com-
mand is present. If both translation and rotation commands are present simultaneously,
rotation takes priority and translations will be suppressed. Conflicting input commands
result in Ilo outl)ut  to the thrusters.
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Tile SAFEI{cre~\’ltlel~  llJercal~iIlit,  iate AAII at any tilllct)ydel)ressillgor  “clicking”
the lJushbutton On the hand controller gri~). Whenever AAH is active iu any axis the
grmn LED on the HCM illuminates. When the button is double clicked (two clicks
within a 0.5 second inter~~al), AAH is clisabled for all three rotatiol~al  axes. If AAH
is active, and the crewmember issuc!s a r’otatiollal  acceleration command about any
axis, AAH is imlnediately disabled on that axis. When this occurs, the remaining axes
remain in A AH. On the other hand, if A AH is initiated simultaneously with a rotational
command from tl~e hand controller, the rotational command will be ignored and AAH
will become active in that axis. ~’his feature is necessary so that a failed-on HCM
rotational command cannot permanently disable AAH on the affected axis.

A AH implements an autonlat  ic rotational deceleration sufficient to reduce axis rates
to near-zero levels. Continuous thruster firings are commanded to reduce rotation about s
an axis whenever its rate is sensed to be above 0.2 degree per second. Once the rates
have fallen  below 0.3 degree  per second, thrusters are fired only as needed  to rnaintaill
attitude within a~)proximately  +5 degrees. ‘1’hrustcrs are not fired when attitude is
withi]l  a +.2 degree  deadband.

Rate sensors, rate noise filters, and associated rate measurement electronics exhibit
significatlt  offset errors, which are largely a fullctioll of rate sensor temperature. Offs@
reduction is used to minimize tile negative effects of rate offset errors. Temperature
lueasurements are periodically sampled and net offset errors estimated. Such estimates
are subtracted from the noise filter rate measurements to minimize rate offset errors.
hTet offset errors are independent for each axis, reaching an average of 0.2 degree per
second and resulting in an average drift of the same magnitude.

A c c e l e r a t i o n  conlnlatlds fro~n  the h a n d  co~ltroller and  from the A A H  function  arc

combined to  crea te  a  single accelera t ion  command.  Thrus ter  select logic is provicled  to

choose suitable thruster filings to  achieve  the  commanded accelera t ion .  ‘Thrus ter  selec-

tion results in on-off  commands  for  each  thrus ter ,  with a  maximum of  four  thrus ters

turned  on  s imul taneous ly . T h r u s t e r  a r r a n g e m e n t  and des ignat ions  a re  shown in  F ig-

ure ~.3. while Tables C.2 and C.3 specify the selection logic. These tables are specified
itl terms oft hree possible command values for each axis: negative thrust, pc)sit ive thrust,
or no thrust at all.

C.1 .4.3 Fault Detection Subsystem

The fault detection subsystem performs four testing functions: a self test, an activation
test, a monitoring function, and a ground checkout function. The fault detection sub-
system also manages the display interface, performing the computation of parameters
and construction of messages for the HChI LCD.

Tile self test provides an overall functional test of the SAFER flight unit without
using any propellant or external  equipment. To carry out the test, the crewmember  is
led through a checklist of prompts displayed 01} the HCk4 I, CD. If a particular test is
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‘l’able C.2: T’hruster  select logic  for X, pitch, and yaw coml”nands.
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Table C.3: Thrllster select logic for Y, Z, and roll comtnat~ds.
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unsuccessful, a failure lnessage is displayed. ‘1’ho following tests are perfornled during
self tc!st: 9

1. Thruster test

2. Hand controller co]ltrols and dis~)lay test

3. Ilatc sensor  fmlction test

The activaticm test checks the functionality of the SAFER flight unit in an opera-
tional mode, being invoked to check the function of the pressure regulator. A minimal
amount of propellant is used and no external equipment is required. The test cou- t
sists of commanding 20 millisecond thruster pulses ill translational and rotational axis .
dircciions,  with opposing thrusters fired as well so no net acceleration results.

A continuous fault check of the SAFER subsystems is performed by tile monitoring i

function, Conlprisiug  the following tests:

1. IJeak monitoring

2.

3.

4.

5.

Battery voltage checks

‘Rank pressure and temperature clmcks

Regulator pressure and temperature checks

Battery pack telnperature  check

Status information resulting from contiguous monitoring is displayed on the HCM LCD
during SAFER flight. The following items are displayed in order:

1.

2.

3.

4.

5.

6.

7.

Ilefault  display, showing GIVz and power percent rcn~aining R

I’ressure and temperature

Rotation rate

Angular displacement

Battery voltage

High rate recorder status

Message display (error queue)

The fault detection system also provides for ground checkout of the SAFER flight
unit. This function processes commands for data requests or avionics tests from ground
support equipment connected to the CFJA’S  ground servicing serial port.

9
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C.2 SAFER EVA Flight Operation Requirements

The full SAF’ER  system has requirements  that cover flight o~)crations as well as su~~port

procedures such as pre-131~A  checkout, ~mopcllant  recliarging, aud battery pack changing .

OU1 SAF~~  fXaIU@C! fOCUSCS 011 a SUbSCt Of th(! fLlll K!CIUh’C!lllWk,  Ilallld~,  thOSC! COV(X’hl$
flight operations duri~lg an EVA. Furthermore, several rccluircmcuts  are iucorporatcd in
modified form to better suit, the purposes of the example. The most significant change
is that the controller sam~)les  switches and serlsors  on every frame rather than accepting
chauge  notifications via a serial line iuterface.  This leads to the conceptually sim~)ler
architecture of a pure sampled-data control system.

C.2.1  Hand Controller Module (HCNI)

The HCM provides the controls atd displays for the SAFER crewmembm  to operate
SAFER and to monitor status.

(1) ~’hc HChl shall conl])rise two uuits, the Haud Controller Unit (llCU) aucl the
I)isplay aud Colkrol  Unit @CU).

(2) The HCM shall provide the controls aud displays for the SAFER  cmvmember  to
operate SAFER and tc) monitor status.

C.2.1.1 Display and Control Unit

The DCU provides displays to the crew and switches for crew commands to powcx  the
SAFER,  tc) select modes, and to select displays.

(3) The DCU shall provide a reel LED aud shall illuminate it whenever an electrical
on-commaud is applied to auy one of the SAFER thrusters.

(4) The DCU shall provide a green LED and shall illuminate it whenever automatic
attitude hold (A AH) is euabled  for one cm more SAFER rotational axes.

(5) The DCU shall provide a 16-character, backlit liquid crystal display (I,CD).

(6) The DCU shall display SAFER instructions aud status information to the SAFER
crewmember  on the I, CD.

(7) The DCU shall provide a three-position toggle  switch to power the SAFER unit
011 and to control the SAFER test functiolls.

(8) The power toggle switch shall be oriented towards the crewmember for “T’ST,” in
the center position for “ON, ” and away for “OFF.”
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(9) The DCU shall provide a three-position, momentary toggle switch to control the
LCD display.

(1 O) ‘The display toggle  switch shall remain in the center position whexl not, beiug used
aud shall be oriented so that l)ositioning the switch tom’ards  or away from the
crewmember will control the LCD menu selection.

(11 ) The DCU shall provide a two-position toggle switch to be used to direct baud
controller commands for either  full rotation or full translation control mode.

(12) The n~ode  select toggle switch shall be posit ioned to the crewmember’s  left fhr the
Rotatio~l  Mode aud to the crewmember>s  right for the Translation Mode.

C.2.1.2  Hand Controller Unit

Tile HCU provides those functions associated with the baud controller and the auto-
matic attitude hold (A AH) pushbutton switch.

(13) The HC(J  shall ~)rovide  a four-axis baud controller haviug three  rotary axes aud
one transverse axis, operated by a side-mouuted hand grip as depicted in Fig-
ure C.4.

( 1 4 )  lle H(3U shall indicate ~min~ary  control n~ot  ions when the grip is deflected from

the center or null position to nlechauical h a r d - s t o p s .

(15) The grip deflections shall result  iu six degree-of-freedom commauds related to
control axes as depicted iu Figures C.5 and C.6.

(16) The HCU shall termiuate commauds  when t he grip is returned tc) the null posit ion.

(17) The HCU shall ~wovide a pushl)utton switch to activate and deactivate A AH.

(18) The pushbutton switch  shall activate A AH when depressed a single time.

(19) The pushbutton switch shall deactivate A AH when pushed twice within 0.5 second.

C.2.2 P r o p u l s i o n  S u b s y s t e m

SAFER thrusters are actuated by the control electronics assembly (CEA)  using the
valve drive assemblies (VDAS).

(20) The propulsion subsystem shall provide 24 gaseous nitrogen (GN2 ) thrusters ar-
ranged as shown iu Figure  C.3.

(21) The VDAS shall accept thruster firing commands from the CEA and apply appro-
priate voltages to the selected thrusters.
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(22)

(23)

(24)

Apkxndh  <;

‘1’hc VDAS  shall have the capability of sensing current  ftow through the thruster
solenoids aud providing discrete signals to tllc C13A indicating such au ewcmt.

The propulsion subsystenl  shall provide two tra~]sducers  to monitor tank pressure
atld regulator outlet pressure.

Tllc!~>ro~~lllsiol  )sllbsystelll  sllalll)rcJt'idc  tw'otel~~~jcratllrc sel~sors  tol1~easurc  tauli
ten~peratureaud  regulator outlet tenl~mature.

C.2.3 Avionics Assemblies

The avionics subsystem iucludessevcral  assembliesho  used withint hebackpack  propul-
sion module, each haviug  a digital iutcrfacw to the CEA.

C.2.3.1 I n e r t i a l  ReferenceUnit  (IRU)

(25)

(26)

(27)

‘I1hclRU shall provicte augularrateseusors  and associated electronics to measure
rotation rates in each angular axis (roll, pitch, yaw):

ThelRU shall providca  tcm~)eratures cnsor  for each augular rate sensor to allow
tmnpcraturc-based compensation.

The IRU shall provide accelerometers to measure linear accelerations in each trans-
latioll axis (X,>’, Z).

C.2 .3 .2  Power  S u p p l y  A s s e m b l y

(28) Tl~e])ower  sll~)~Jly  sllalll)ro\idea  \oltagcse  l]sorto  l[leas~lret} levalvedr  i\ebattery
volt age.

(29) Tl,c~,owcrs ~]]~~~lys  l,all~~rc~\ideav  oltagese  ~lsorto  *~leasuretl  leelectro~]icsba  ttery
volt age.

(30) The power sup~)ly  shall provide atemperature  sensorto  measure battery pack
tem~wrature.

C.2.3.3  Data Recorder Assembly (DRA)

( 3 1 )  ~’l]eDI?Asliallacc(:l)t  ~)erforltlarlce  data atldsyster~l  ~)arar~leters  frornthe  CEA
for storage aud ~)ost-flight  aualysis.

(32) Tile I)ltAsllall  vriteforlllattedd  atao I~l~ollvolatilel ~lc11lorydevices.
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C.2.4 Avionics Software

Executing on a microprocessor within the control electronics assembly (CEA), the
SAFER  avionics software provides the capability to control SAFER  flight maneuvers,
to check out functionality and detect faults in SAFER, and to display SAFER fault
conditions and general health and consumable stat us.

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

The avionics software shall reference all commauds and maneuvers to the coordi-
nate systen~ defined in Figure ~.3.

The avionics software shall provide a six degree-of-frecdon~  nlaneuveriug  control
capability in response to crewnlember-initiated  conunauds fronl t]le hand con-
troller nlodule.

The avionics software shall allow a crmwnen~ber  with a single comtnand to cause
the nleasured SAF13R rotation rates to be reduced to less than 0.3 degree per
second in each of the three rotational axes.

The avionics software shall atteulpt to nlaintaiu  the calculated attitude within *5
degrees of the attitude at the tinle the measured rates were reduced to the 0.3
degree per second liu~it.

The avionics software shall disable AA1l on an axis if a crcwn~enher  rotation
conl~naud is issued for that axis u’bile A AH is active.

Any hand controller rot ation cxnnn~and present at the t in~e A AH is initiated shall
subsequently be ignored until a return to the oft’ condition is detected for that axis
or until AAH is disabled.

Hand controller rotation commands shall sul)press any translation commands that
are present, but A AH-generated rotation commands may coexist with t ranslat ions.

At most one translation command shall be acted upon, with the axis chosen in
priority order X, Y, Z.

The avionics software shall provide accelerations with a maximum of four sinml-
taneous thruster firing commands.

The avionics software shall select thrusters in response to integrated AAH and
crew-generated commands according to Tables C.2 and C.3.

The avionics software shall provide flight control for A AH using the IRU-n~easured
rotation rates and rate sensor tenl~)eratures.

The avionics software shall provide fault detection for propulsion subsystem leak-
age in excess of ().3% of GNz mass per second while thrusters are not firing.
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(45) The avionics software  shall prcwidc  limit checks for battery temperature and volt-
ages, propulsion tank pressure and temperature, and reglllator  Prcss(lr(’  and tclll-
~Jerature.

C.2.5 Avionics  So f tware  Inter faces

The avionics software accepts input data from SAF’13~ conlponents  by sampling the state
of switches and digitized sensor readings. Outputs provided by the avionics software to
SAFER conlponents  are transmitted in a device-specific Inatlner.

(46) ‘1’}Ic avionics softwale shall accept the following data from the hand controller
module:

● ☞ pitch, -- pitch

.+ x,-x

● -tyawor+Y, -yawor -Y

● + roll or -1 7,, roll  01 ~,

● l )O w e r / t e s t  s w i t c h

●  Mode sw’itch

. I)isplay p r o c e e d  switch

● A A H  p u s h b u t t o n

(47) l’hc avionics  software slmll accq,t  tl,e following data from the propulsion subsys-
tCIll:

● Tank pressure and temperature

● Regulator pressure and tem~)m-aturc

● Thruster-on signal

(48) The avionics software shall accept the following data from the inertial reference
unit:

● Roll, pitch, aud yaw rotation rates

● Roll, pitch, and yaw sensor temperatures

● X, Y, and Z linear accelerations

(49) The avionics software shall accept the following data from the power supply:

● Valve drive battery voltage

● F.lectronics  battery voltage

● Battery pack temperature
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(50) The

●

●

●

●

●

●

(51 ) ~“’hc

avionics software shall ~movide  the following data to

Pressure, tempcrat ure, and voltage nleasuren~ents

Aleri indications

Rotation rates and dis])laccnncnts

Crew ~monq)ts

Failure nlessagcs

Miscellaneous status nlessages
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the HCM for display:

avionics software shall provide the following data to the valve drive assemblies
for cacll of the 24 thrusters:

●

(52) The
My:

●

●

●

●

●

Thruster on/ofl’  indications

avio~lics software shall provide the follcwing  data to the clat a recorder assem-

lRU-sensed rotation rates

I1tU-sensed  linear acceleratiol~s

IRIJ rate sensor tenl~)eratures

Angular displacements

AAII comnlands tatus

C.3 Formalization of SAFER Requirements

A PVS fornlalizatioll  of the SAFER systenl described thus far is presented bclow2. A
subset of t hc SA~l~R requirmnents  has been chosen for nlodeling  that enlphasizes the
nlain functional require~uents  atld onlits support functions such as the ground check-
out feat urcs. Eve] 1 ~vi t liiu the flight operation requirements some functions have been
represented only i~l abstract form.

C.3.1 1’VS Language F e a t u r e s

C)nly  a fcw PVS language features need to be understood to read the fornlal specifi-
cation that, follows. 1’1’S specifications are organized around the concept of theories.
Nach theory is cwnpcmd of a sequence of declarations or definitions of various kinds.
T)efitlitions  fronl other theories are not visible unless explicitly itnported.
—

‘The PVS source files for the SAFER exan~ple are available 011 LaRC’s Web server iu the directory
ftp://atb-wuw.l arc.nasa.gov/Gui  debooks/

9
9



I’VS allows the usual range of scalar types to model various quantities. Numeric
types include natural numbers (nat ), integers (int ), rationals  (rat), and reals (real).
Nonnumeric  types include booleans (bool)  and enumeration types ({Cl, C2, . ..}).
Subranges a~ld  subtyping mechanisms allow derivative types to be introduced. Uninter-
pmt ed, nonempty t ypc am of type TYPE+.

Structured data types or record types ate used extensively in sl)ecifications. l’llese
types are introduced via declarations of the following form:

record_ type: TYPE = [# VI: type_l, v2: type_2, . . . #1

~’hc first cxnnponcnt of this record  may be accessed using the notation v 1 (R). A record

value  cons t ruc ted  fronl individual conlponent  values nlay be synthes ized as  fo l lows:

(# V1 := <expression 1>, V2 := <expression 2>, . . . #)

Similart orecords  aretuples,  introduced viadeclarations  of an analogous fornl:

tuple . type : TYPE = [type_l, type_2, . . . 1

The first component ofatu~>le I~laybe  accessed  usirlgtllc  l~otatio~] proj-l(T).  A tuple
value constructed from individual component values may be synthesized as follow’s:

(<expression 1>, <expression 2>, . . . )

An im~)ortant  class of tylms  in PVS is formed by the function types. A declaration
of tllc! form:

fun_type:  TYPE = [type_l -> type_2]

definesa (higher-order) type whose values are functions from type-1 to type-2. Func-
tion values may be constructed using laml)da  expressions:

(LAMBDA X, y: < e x p r e s s i o n  of X,  y>)

Logical variables are introduced to serve as argunlents to functions and to express
logical forlnulas  or assertions:

x, y, z: VAR var_type

l,ocalvariable  dec]aratiolls also areavailable  itl1llost cases. Global variable declarations
apply throughout the containing theory but no further.

A nan~ed function is defined quite sin~plyby  the followillg  notation:

fn (arg_l,  arg_2”, . . .): result_type  = <expression>
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13achoft  hevariablesarg.i  must have been declared of some ty~~eprc~’iouslyorgivcll
a local type declaration. The function definition must be mathematically well-defined,
meaning’ its Sing]e  result  value! is a function of the arguments and possibly some con-
stants. No “free” variables are allowed within the expression. In addition, the type of
the expression must be compatible with the result type.

Besides  fully defini~lg  functiolls, it is possible to declare utlspecified  functions using
the notation:

f n  (arg_l, arg_2, .  . . ) .  r e s u l t - t y p e

In this case, the function’s signature is provided, but there is no definition. This is often
useful when developing specifications in a top-down fashion. Also, it may be that some
functions will never become defined in the specification, in which case they can never
be expanded during a proof.

One type of expression in PVS is particularly useful for expressing con~plex funct ions.
This feature, known as a LET expression, allows the introduction of bound variable
nan~es to refer to subexpressions.

LET VI = <expression 1>, V2 = <expression 2>, . . .
IN <expression involving vI, v2, . ..>

llach  of the variables serves as a shorthand notation used in the final expression. The
meaning is the same as if each of the subcxpressions were substituted for its correspond-
ing variable.

Finally, I’VS provides a tabular notation for expressillg  conditional expressions in
a naturally readable form. For example, an algebraic sign function  could be defined as
follows:

sign(x) : signs = TABLE %---------------------------%
I[x<olx=olx>oll

% - - - - - - - - - - - - - - - - - - - - - - - - - - %

I - 1 10111
% - - - - - - - - - - - - - - - - - - - - - - - - - %

ENDTABLE

C.3 .2  Overv iew ’  o f  Formal izat ion

Tile formal model uses a state machine representation of the main control function.
The controller is assumed to run continuously, executing its control algorithms once per
frame, whose duration is set at 5 milliseconds. In each frame, sensors, switches and the
llatldgri~~ col~troller  aresatll~)led  toprovide  tlleill~~uts  totllecoxltrol  functions for that
frame. Based on these inputs and the controller’s state variables, actuator commands
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C.3.2.2  Hand Controller Module

B
‘The H C.hl s~vitchcs at-c Inodclccl in this tllcory as is the hand grip mechanisnl.  The
derivation of a six degree-of-frecdonl command fronl  the four-axis hand controller based
on current mode is defined here. Basic types for the I,13Ds and character display are !
included as well. A display buffer is modeled as an array of character.display  values.
A buffer ~)ointer  selects which element is currently being displayed. The pointer is
updated when the previous state of the display proceed switch is neutral and the switch

B
makes a transition in the up or down  direction.

C.3.2.3 Propuls ion  Module D

Tliruster names are ilkroduced  via an enumeration type for the full complement of 24
t IIrusters. A more elaborate type called thrust er_des ig represents thruster designa- 9
tions in terms of their three  componeut ])arts.  This makes use of an advanced feature of
the PVS language knc)wn as dependent types, whm the type of later components of a
record or tul)]e may depelId  on the value of earlier com~)onents.  A mapping from names “s
to designations is also provided. Fiua]ly, lists of thrusters are used to lnodel actuator
co~u~nancls,  where those thrusters to be fired arc included in the list. Lists ill P\~S are
analogous to the concept of lists ill the Lisl) progranllning  language and its descendants. 9

C.3.2.4  Automatic Attitude Hold
I

A moderately complex ~)art  of the SAFEI{ model revolves around the attitude hold
feature. The hand grip pushbutton for exlgagiug AAH mode is scanned to detect tram
sit ions that should be acted upol]. l’hc single-click, double-click engagement protocol is 1
relmesented  by the state diagram shown ill Figure C.8, where the arcs are labeled with
t lie switch values sensed in the current frame. The type AAH_engage -st at e denotes the
states in this diagram, while the fuuctioll button_transition  models the diagram’s I
transitiolls.

Several state conl~)onents  are modeled for managing AAH and its special require-
ments. ‘1’he actual cent rol law is not defined, but unspecified functions are provided to I

indicate where such processing fits in. The overall AAH transition function is defined
by the F’VS function AAH-transition, takillg into account the conditions for activating
and deactivatillg AAH on each axis, as well as the timeouts necessary for detecting m

double clicks of the AAH pushbutton.

C.3.2.5 Thruster  Se lect ion

Thruster selection takes place in two major steps: forming an integrated six degree-of- B
freedom command from the HCM command and AAH command, and then taking the
integrated comrnancl and chosiug  individual thrusters to fire. ‘1’hree  functions take care

I
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and crew display outputs are generatecl,  as well as the controller’s state fcu the next
frame.

Eleven PVS theories are used to formalize tllc requirements:

. avionics-types

● hand. controller module

●  Propulsionmodule

● inert ial_reference.unit

. automat ic.attitude-hold

● thruster -se lect ion

● power-supply

●  data_recorder

.  self.test

●  HCM-display

●  avionicsmodel

Tile full text of these theories is presented ill Section C.3.3. The theories have been
typechecked  by PVS, and all resulting TCCS (type correctness conditions) have been
~Jroved.

Construction of the PVS specifications proceeded in a mostly top-down manner
initially, but once ~)arsing and typechecking  of the PVS source was begun, the lowcr-
levelportion  sneededt  obeprovided.  For thisreason,b  asictypest  end to be doneearly
during specification development and mauy of the definitions ‘(meet in the middle” as
both the upper and lower layers of the hierarchy are pushed toward completion. The
following paragraphs point out some highlights of a subset of the theories, serving to
annotate the PVS specifications of Section C.3.3.

C.3.2.1 B a s i c  T y p e s

A few common type definitions are provided for use elsewhere within the specification.
Sensor readings are all modeled as real numbers. Several enumeration types are intro-
duced to model translation and rotation commands. The six-dof  _command type is a
record that integrates all six axis commands. A few constants are also included to give
names and values to null conlnla~lds.
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C.3.2.2 Hand Controller Module

The HCM switches arc ~[lodckl  in this theory  as is the hand grip ]nechanism.  The
derivation of a six degree-of-freedom command from the four-axis hand controller based
on current lnodc is defi~led  here. Basic types for the L13Ds and character display are
included as well. A display buffer  is modeled as an array of charact er-di.  splay values.
A buffer pointer selects which element is currently being displayed. !lle pointer is
updated when the previous state of the display proceed switch is neutral and the switch
makes a transition in the UI) or dowl} direction.

C.3.2.3 Proj)ulsion  Module

Thruster names are introduced via an enumeration type for the full complement of 24
thrusters. A more elaborate type called thruster_desig  represents thruster designa-
tions in terms of their three  component parts. This makes use of an advanced feature of
the PVS language known as dependent types, ~vhere the type of later components of a
record or tuplc may depend on the value of earlier components. A mapping from names
to designations is also provided. Fixlally,  lists of thrusters are used to nlodel actuator
colnmands, where those thrusters to be fired arc included in the list. Lists in PVS are
analogous to the concept of lists itl the ],isp programming language and its descendants.

C.3.2.4 Automatic

A moderately complex
feature. The hand grip

Attitude Hold

])art of the SAFE]{ model revolves around the attitude hold
pushbutton for engaging  AAH nlode is scanned to detect tran- m

sit ions that should be acted upon. The single-click, double-click engagement protocol is
represcnlted by the state diagran~ showrn in Figure  C.8, where the arcs are labeled with
tile switch values sensed in the current frame. The type AAH.engage.state denotes the
states in this diagram, while the function button.transition nlodels  the diagranl’s
transitio~ls.

Several state con~~jonents  arc nlodeled for nlanaging  AAH and its special rcquire-
nlents. The actual cent rol law is not defined, but unspecified functions are provided to
indicate where such processing fits in. The overall A AH transit ion function is defined
by the 1’VS function AAH_transition, taking into account the conditions for activating
and deactivating AAH on each axis, as well as the tinleouts  necessary for detecting
double clicks of the AAH pushbutton.

C.3.2.5 Thruster Selection

Thruster selection takes place in two major steps: forming an integrated six degree-of-
freedom command from the HCM comtnand and AAH command, and then taking the
integrated command and chosing  individual thrusters to fire. Three functions take care
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of tllc first part by capturing tllc logic  for lJrioritizing  translation comma~lds, ~nerging
rotation co~ntnands,  and forming the correct aggre@e  command under the various con-
ditions. Two functions called BF.thrusters  and LRUD_thrusters formalize the thruster
selection logic in ‘1’ables  (2.2 and C.3. These functions are defined using trilJly nested
tables  to avoid problems with cun~bcxsome  TCCS (type correctness conditions). A more
readable form of the tables using triples of the axis commands resulted in large and itl-
tractable T(3CS  so the less pleasing form was necessary. This is an example of the trade-
offs that must be made occasionally  when working with forma] specifications. Finally,
the theory concludes with the functions selected.thrusters  and selected-actuators
that integrate the results of the preceding functions to produce the final list of c]losen
tilt’usters.

C.3.2.6 A v i o n i c s  M o d e l

This top-level theory pulls together all the separate port ions of the formal izat ion. The
overall state machine model for the SAFER controller is captured in the form of type
definitions for the inputs, outputs, and state values, as well as the main state transition
function called SAFER.control.  Note the usc of a LET expression to define most of the
separate pieces that are lnerged to form the final outputs and next-state components.
An initial state constant is also provided in this theory.

C.3.3 Pull Text of PVS Theories

0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 4 0 0 0 0 0 0  0000 OO*OOOO@  04#@a*0000*0 000 **00000*0 04 **000*00
111111111111111 111111111111111 llfllllllllllll 1111111111/1111 llllllllllOoooo Qaoo96ee Ooeaooaoaeoeo  Ooesoaeeoeeea Meoonnaeooaoo *O 009S 09000*0 0 0 0 0 0

% %

%%  The following PVS theories comprise a formal model of a subset
%% of the control system functional requirements for an EVA
x%
%%
%%
%%
%%
%%
%%
%%
%%

propulsion system. This example is heavily based on NASA’s
Simplified Aid for EVA Rescue (SAFER), developed at the Johnson
Space Center (JSC) . For pedagogical reasons, the requirements
deviate somewhat from the actual SAFER system. Furthermore, the
SAFER system is still under development. As a result, the model
that follows does not necessarily reflect the actual SAFER
requirements as maintained by JSC.

References:
%% 1.
%%
%% 2.
%%
%%

Simplified Aid for EVA Rescue (SAFER) Operations Manual.
NASA report JSC-26283, Sept. 1994.
Simplified Aid for EVA Rescue (SAFER) Flight Test Project,
Flight Test Article Prime Item Development Specification.
NASA report JSC-25552A, July 1994.
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%%
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avionics.types: THEORY
BEGIN

pressure: TYPE = real
temperature: TYPE = real
voltage: TYPE = real

angular.rate: TYPE = real
linear_accel: TYPE = real.

axis_command: TYPE = {NEG, ZERO, POS}

tran.axis: TYPE = {X, Y, Z}
rot. .axis: TYPE = {roll,  pitch, yaw>

tran_command: TYPE = [tran_axis  -> axis_command]
rot_command: TYPE = [rot_axis -> axis_commandl

rot_predicate: TYPE = [rot_axis -> boon

six_dof_command: TYPE = [# tran: tran_command, rot: rot_commamd  #]

null_tran_command: tran_command  = (LAMBDA (a: tran_axis): ZERO)
null_rot_command: rot_command = (LAMBDA (a: rot_axis):  ZERO)

null_six_dof : six_dof_command  = (# tran := null_tran_command,
rot := null_rot_command  #)

END avionics.types

e @ e @ 00 Ooeooeeeao *9 a * O*O  00 0 * 00 04 4* 0 00 * e 0 * 0 0 0 B * ** e e *Oe* 0 * 0 b* 0 @e* a a 80 0 008
1111111/11/1111 llf/l/lf/llllfl llllll/lll/flll lllllllf///flfl /lllll///l0 0 0 8 nee 4 08 4 0 e 0 e 00 0 000 e 4 00 0 0 9* 0 0 88 0 8* 8 0 0 0 * 6 6 oa *9 e 0 0 8 * e *8* 08 4 0 0 e a 0 4 4 0 0 0 0

% %

%% The hand controller module (HCM) consists of a set of switches,
%% a hand grip controller with integral pushbutton, and a set of
%% crew displays. A six degree-of-freedom command is derived from
%% four-axis hand grip inputs and the control mode switch position.
%% It is assumed that switch denouncing is provided by a low-level
%% hardware  or software mechanism so that switch transitions in this
%% model may be considered clean.

[

!
B
9
B
R
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%%
0 0 0 4 0 0 0 0 0 0 0 4 0  0000000000000 0006,00000000 0080090000000 8Q 04908080008 ,,,eo
l///ll///l//////l//l/llll//////l/////l/l/////l////////l///////////////00 0 0 0 0 0 00 0 0 0 e o 0 e 0 0 0 0 0 00 00 4 0 0 0 0 0 0 0 e o 0 0 e o 0 6 0 00 0 00 0 0 00 e e 0 0 0 e , e o 0 e , 0, , , , 6 0

hand.controller.module:  THEORY
BEGIN

IMPORTING avionics_types

power_test_switch: TYPE = ~OFF, ON, TSTI

display_proceed_switch: TYPE = {PREV, CURR, NEXT}

control_mode_switch: T Y P E  = {ROT, TRANl

AAH_control_button: TYPE = ~button_up, buttondown)

HCM_switch_positions:  TYPE = [#
PWR : power_test_switch,
DISP: display_proceed_switch,
MODE: control_mode_switch,
AAH : AAH_control_button
#]

%% The hand grip provides four axes for command input, which are
%% multiplexed by the control mode switch into the required six axes.

hand_grip_position:  TYPE =
[# vert,  horiz, trans, twist:  axis.command  #]

grip_commmnd  ((grip: hand_grip_position) ,
(mode: control_mode_switch)):  six_dof_command =

(# tran := null_tran_command  WITH [
X := horiz(grip),
Y := IF mode = TRAN THEN trans(grip) ELSE ZERO ENDIF,
z := IF mode = TRAN THEN vert(grip) ELSE ZERO ENDIF],

rot := null_rot_command WITH [
roll := IF mode = ROT THEN vert(grip) ELSE ZERO ENDIF,
pitch := twist(grip),
yaw := IF mode = ROT THEN trans(grip) ELSE ZERO ENDIF]

#)
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%% The HCM display mechanism is centered around a 16-character LCD.

char_display_index:  TYPE = {n: nat I 1 <= n & n <= 161 CONTAINING 1

character_display: TYPE = [char_display_index  -> character]

blank_char_display:  character_display  =
(LIMBIM  (i: char_display_index):  char(32))

HCM_display_set: TYPE = [#
LCD: character_display,
THR: bool,
AAH: bool
#]

%% Multiline  messages are stored in a buffer and viewed one line
%% at a time.

HCM.buffer_len: above[O] %% Any integer > 0

HCM.buffer_index: TYPE = {n: nat I 1 <= n & n <= HCM_buffer_len}
CONTAINING 1

HCM_display_buffer:  T Y P E  =  [HCM_buffer_index  -> character.display]

blank_display_buffer:  HCM_display_buffer  =

(LAMBDA (i: HCM_buffer_index): blank_char_display)

%% The current pointer in the display state identifies which line to
%% display, and the pointer can be moved up and down using the display
%% proceed switch.

HCM-display_state:  TYpE = [ #
switch: display_proceed_switch,
buffer: HCM_display_buffer,
current: HCM_buffer_index
#]

next_disp_pointer( (new_sw: display_proceed_switch) ,
(display: HCM_display_state)):  HCM_buffer_index =

IF switch(display) = CURR AND new_sw /= CURR
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THEN IF new. sw = PREV

THEN max(l, current(display)  -  1 )

E L S E  m i n ( H C M _ b u f f e r _ l e n ,  current(display)  + 1)

ENDIF

ELSE Current(display)

ENDIF

END hand.controller.module

, 0 0 0 0 0 4 0 000 0 0 0 0 00 00 0 0 0 044 0 9 000004 0 000 0090 0900 000 0 9 040000 8000 0 4 04 00 0 40 0
///l//lll/l/l//llllllll/lll/lllll//l//ll///l//l/l/lll/////////l/l/////0 0 0 0 0 0 0 0 n 0 e o a o e 8 0 0 0 0 0 0 e 88 9* oe 0 e o 0 0 000 e en o e se o *e e e oee o 00 0 0 0 0 a o 0 a 0 0 * 0 00 0

% %

%% The propulsion module provides a number of sensors and a set of
%% actuators to control the 24 thrusters, which are grouped into
%% four clusters or quadrants.
%%
o 0 0 0 0 0 000 00 0 # 0 0 000 0 0 e @ Oem O* 0 0 9*OE 0 009 000 0 Ooe* 000 9000 *O*ba 0 00 000 0 Oa 0 a 0 0
ll/llllllll/lfl lllllfllllll/ll 111111111111111 111111111/1/111 /lllll/lll0 0 0 00 0 0 0 0 0 4 00 0 a o a 0 0 0. e o 00 0 0 0 00 0 00 0 00 0 0 00 0 e 00 0 00 a 8 *O 60 ea 0 e 0 a 00 4 0 e 04 e 00 0

propulsion.module: THEORY
BEGIN

IMPORTING avionics_types

propulsion_sensors: TYPE = [#
tank_press: pressure,
tank_temp: temperature,
reg_press: pressure,
reg_temp: temperature,
thruster_on: bool
#]

thruster_name: TYPE =
{Bl, B2, B3, B4, Fl, F2, F3, F4,

LIR, LIF, R2R, R2F, L3R, L3F, R4R, R4F,
DIR, DIF, D2R, D2F, U3R, U3F, U4R, U4F}

%% Thruster designators are triples of the form
%% (thrust direction, cluster no., forward/rear location)
%% Not all combinations of these values are possible so a dependent
%% type is used to represent the constraints.

thruster_direction: TYPE = {UP, DN, BK, FD, LT, RT}
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thruster. quadrant: TYPE = {n: nat I 1 <= n & n <= 4} CONTAINING 1
thruster_locati.on: TYPE = {FW, RR] % forward, rear

valid_quadrant ((d: thruster_direction),
(q: thruster_quadrant)): bool =

CONDd=UP->q=30Rq= 4,
d=DN->q=10Rq=2,
d=LT->q=10Rq=3,
d=RT->q=20Rq=4,
ELSE -> true

ENDCOND

% T h r u s t e r s  B1-B4 a n d  F1-F4 a r e  n o t  n o r m a l l y  w r i t t e n  with a

% f o r w a r d / r e a r  l o c a t i o n  t a g ,  b u t  t h e y  a r e  s u p p l i e d  b e l o w  t o  f i t

% the type declaration s c h e m e .

thruster_desig: TYPE = [
dir: thruster_direction,
{quad: thruster.quadrant I valid_quadrant(dir, quad)},
{1OC : thruster_location I

(dir = BK ‘> 10C = FW) AND (dir = FD ‘> 10C = RR)}
1

thruster_map(thruster: thruster_name): thruster_desig =

TABLE thruster
%--------------------x

I BI I (BK , i, FW) II
I B2 I (BK, 2, FW) II
I B3 I (BK, 3, FW) 11
I B4 I (BK, 4, FW) II

%--------------------%
I FI I (FD , 1, RR) II
I F2 I (FD, 2, RR) II
I F3 I (FD, 3, RR) II
I F4 I (FD, 4, RR) II
%--------------------%
I LIR I (I-T, 1, RR) It
I LIF I (LT, 1, FW) II
I R2R I (RT, 2, RR) II
I R2F I (RT, 2, FW) 11
%- - - - - - - - - - - - - - - - - - - -%
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I L3R I (L,T, 3, RR) 11
I L3F I (IT, 3, FW) II
I R4R I (RT, 4, RR) II
I R4F I (RT, 4, FW) 11
%---------”-----------%

I DIR I (DN, 1, RR) II
I DIF I (DN, 1, FW) II
I D2R I (DN, 2, RR) II
1 D2F I (DN, 2, FW) II
%---------”-----------%
I U3R I (Up, 3, RR) II
I U3F I (UP, 3, FW) II
I U4R I (UP, 4, RR) II
I U4F I (UP, 4, FW) II

%---------”-----------%
ENDTABLE

%% Actuator commands are modeled as a list of thrusters to be fired.

thruster_list: TYPE = list [thruster_nameI

actuator_commands: TYPE = thruster_list

null_actuation: actuator_commands = (: :)

END propulsion_module

0 0 , a 00.0 a 0 e * 0 000 a 0 a e o 0 0 0 0 0* *a a @ 00 0 Oee 0 90 @ 8 00 0 **O** 0000 0 a @ 0 0 a 00 0 0 @a 000 0
l/llllllll/llllllllllllllll/llllll/llllllll/lllll//l//ll//lll/ll//ll/lo 0 0 0 a , 0 4 e , *O o 0 0 0 0 0 0 0 0 * o 00 0 ,00 0 0 0 0 e ,0 0 0, 0 0 a a e, e, *O o 0 , e # #* e o , e a o # ,ae o , , 0

%%
%% Sensing for angular rotation rates and linear acceleration is
%% providedby the inertial reference unit (IRU).
%%
40 @Oe 0 0 0 0 00 e 0 e o 0 0 08 a * * a 00 0 00 00 0 *88 *O 000 0 * * a * 0 *@co 0 0, 0084 00 0, , @ a 0 , , a a e a
ll/llllllllfllllllllllllllllllllllllllllll//llllllllllllll/ll///llfllfQ *O #o 0 0 0 0 a o 0 b o 0 0 0 0 e* 0 9 @ 4 0 0 e O* a 0 *4 e 0 00 Q 40 a * 0 0 0 00 e # 0 0 0 0 *4 0 00 e e 00 e 0 0 0 0 ,, #

inertial_reference_unit: THEORY
BEGIN

IMPORTING avionics_types

i n e r t i a l _ r e f _ s e n s o r s :  T Y P E  =  [ #
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roll. rate:
pitch_rate :
yaw_rate:
roll _temp:
pitch. temp:
yaw_temp:
X_accel:
Y_accel:
Z_accel:
#]

203

angular_rate,
angular.rate,
angular_rate,
temperature,
temperature,
temperature,
linear_accel ,
linear_accel ,
linear_accel

END inertial_reference_unit

0 e o e o a 00 00 00 * a 000 04 0 *OO  0 #* 0 O* 0 0 00 boo 90 9* * * O*@  00 0080 0 * 06000 0 000 0 a Oc o ,0 e
1111//11/111111 1111111111//1// /l//l 11//1111//111// l//l/ l//// ////l /lllle 0 0 e e e e e e e 8 , 0 0 9, 9 0 0 0 0 Q 0 ee e 000 e 0 0 0 0 ,9 * e 9 e 00 0 * 0 0, , 0 ,, , 0 *8 * e 0 0 e o , 8 0 68 0 *8 o

% %

%% An automatic attitude hold (AAH) capability may be invoked to
%% maintain near-zero rotation rates. A pushbutton mounted on the
%% hand grip engages AAH with a single button click, and disengages
%% with a double click. Internal state information is maintained
%% to observe the button pushing protocol, keep track of status for
%% each axis, and implement the attitude hold control law.

%%
0 0 0 0 0 0000 0 0 ao a 00 0 .0 ..00 000 0 0 0 e 0 Q o * 09 0 0 00 0 0 00. .9 9 n 9* * 0 9* *OO  a . . . . ee.. e* o
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automatic_attitude_hold: THEORY
BEGIN

IMPORTING avionics..types, hand_controller_module,
inertial_reference_unit $ proPulsion_module

click_timeout: nat = 100 %% At most 0.5 second between button
1% pushes for a double click.

AAH_engage_state: TYPE = {AAH_off, AAH_started, AAH_on,
pressed_once, AAH_closing, pressed_twice}

AAH_control_law_state:  TYPE+

A A H _ s t a t e : T Y P E  =  [ #  a c t i v e _ a x e s : r o t _ p r e d i c a t e ,

ignore_HCM: r o t _ p r e d i c a t e ,

t o g g l e : A A H _ e n g a g e _ s t a t e ,

t i m e o u t : n a t ,
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control.vars:  AAH_control_law_state  #]

all_axes_off(active:  rot_predicate): bool =
(FORALL (a: rot_axis): NOT active(a))

%% On each frame, the sampled value of the AAH engage button is

%% checked to determine whether AAH is engaging or disengaging.
%% This function implements the AAH engagement state diagram.

button_transition( (state: AAH.engage-state)  ,

(button: AAH_control_button)  ,
(active: rot_predicate) ,

(clock: nat ) ,
(timeout: nat)): AAH_engage_state =

TABLE
state 9 button

%---------------------------------%
1[ buttondown I button_up  II

%--------------------------------------------------%
I AAH_off I AAH_started I AAH_off II
I AAH_started I AAH_started I AAH_on II
I AAH_on I pressed_once I state_A II
I pressed_once I pressed_once  I  AAH_closing  I I
I AAH_closing I p r e s s e d _ t w i c e  I s t a t e _ B II

I p r e s s e d _ t w i c e I p r e s s e d _ t w i c e  I A A H _ o f f II

%--------------------------------------------------%
ENDTABLE

WHERE state_A =

IF all_axes_off (active) THEN AAH_off ELSE AAH_on ENDIF,

s t a t e _ B  =

IF all_axes_off(active) THEN AAH_off

ELSIF c l o c k  > t i m e o u t THEN AAH_on ELSE AAH_closing

ENDIF

%% The control law used to implement attitude hold is represented by two
%% functions that map sensor inputs and control law state into next state
%% and output values.

AAH_control_law( (IRU_sensors: inertial_ref_sensors),
(prop_sensors: propulsion_sensors),
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(AAH_state:

AAH_control_out  ( (IRU_sensors:
(prop_ sensors:
(AAH..state:

initial_control_law_state: AAH_
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AAH_state)): AAH_control_law_state

inertial_ref_sensors) ,
propulsion_sensors) ,
AAH_state)): rot_command

control_law_state

%% AAH state information is updated in every frame. Key transitions in
%% the engage-state diagram cause various state variables to be set.

AAH_transition(  (IRU_sensors:  inertial_ref_sensors),
(prop_sensors: propulsion_sensors),
(button_pos: AAH_control_button)  ,
(HCM_cmd: six_dof_command)  ,
(AAH_state: AAH_state),
(clock: nat)): AAH_state =

LET engage = button_transition(toggle(AAH_state) ,
button_pos,
active_axes (AAH_state),
clock,
timeout(AAH_state) ),

starting = (toggle(AAH_state) = AAH_off AND engage = AAH_started)
IN (# active_axes := (LAMBDA (a: rot_axis):

starting OR
(engage /= AAH_off AND
active_axes(AAH_state)  (a) AND
(rot(HCM_cmd)(a)  = ZERO OR
ignore_HCM(AAH_state) (a)))),

ignore_HCM := (LAMBDA (a: rot_axis):

I F  s t a r t i n g

T H E N  rot(HCM_cmd)(a) /= Z E R O

ELSE ignore_HCM(AAH.s ta te )  (a )

ENDIF) ,

toggle := e n g a g e ,

t i m e o u t := IF  toggle(AAH_sta te)  =  AAH_on AND

e n g a g e  =  p r e s s e d _ o n c e

THEN c lock  +  click_timeout

E L S E  t i m e o u t ( A A H _ s t a t e )

ENDIF ,

control_vars := A A H _ c o n t r o l _ l a w ( I R U _ s e n s o r s ,



IF tran(X) /= ZERO

THEN null. tran. command

E L S I F  tran(Y) /= Z E R O

THEN null_ tran_command

ELSIF tran(Z) / =  Z E R O

THEN null_ tran_command

ELSE null_tran_command

ENDIF

prop_sensors,
AAH_state)

#)

END automatic_attitude_hold
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% %

%% Thruster selection logic is formalized in the following theory.
%% Hand controller and AAH commands are merged together in accordance
%% with the various priority rules, yielding a six degree-of-freedom
%% command. Thruster selection tables are consulted to convert the
%% translation and rotation components to individual actuator
%% commands for opening suitable thruster valves.
%%
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thruster_selection:  THEORY
BEGIN

IMPORTING avionics_types, propulsion_module, automatic_attitude_hold

rot_cmds_present(cmd: rot_command):  bool =
(EXISTS  (a:  rot-axis) :  crnd(a)  /= Z E R O )

%% At most one translation is allowed, in priority order X, Y, Z.

prioritized_tran_cmd(tran:  tran_command): tx-an_command .

WITH [X := tran(X)]

WITH [Y : =  tran(Y)]

WITH [Z : =  tran(Z)]

%% Hand grip rotation commands take precedence over AAH commands
%% unless inhibited at the start of AAH.

combined_rot_cmds ((HCM_rot: rot_command)  ,
(AAH: rot_command) ,
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(ignore_HCM: rot_predicate)): rot_command  =

(LAMBDA (a: rot_axis):
IF HCM_rot(a)  = ZERO OR ignore_HCM(a)

THEN AAH(a)
ELSE HCM_rot(a)

ENDIF)

%% Hand grip rotations suppress translations but AAH rotations do not.

integrated_commands ((HCM: six_dof_command)  ,
(AAH: rot.command)  ,
( s t a t e :  AAH_state)):  six_dof_.command  =

IF all_axes_off(active_axes(state)  )
THEN IF rot_crnds_present(rot(HCM))

THEN (# tran := null_tran_command,
r o t := rot(HCM) # )

ELSE (# tran := prioritized_tran_cmd(tran(HCM)  ),
r o t := null_rot_command  #)

ENDIF
ELSE IF rot_cmds_present(rot(HCM))

THEN (# tran := null_tran_command,
r o t := combined-rot_cmds(rot  (HCM) , AAH,

ignore_HCM(state))  #)
ELSE (# tran := prioritized_tran_cmd(tran(HCM)  ),

r o t := AAH #)
ENDIF

ENDIF

%% Selection of back and forward thrusters results in a pair of
%% thrusters lists, the first of which gives mandatory thrusters
%% and the second gives optional thrusters. This function represents
%% the selection table for X, pitch, and yaw commands.

thruster_list_pai.r:  TYPE = [thruster_list,  thruster_list]

BF_thrusters((A, B, C: axis_command)): thruster_list_pair  =

TABLE A
I NEG I TABLE B

I NEG I TABLE C
%------------------------””-------------%
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I NEG i ((: B4 :), (: B2, B3 :)) II
I ZERO I ((: B3, B4 :), (: :)) 1!
I PUS i ((: B3 :), (: Bl, B4 :)) II
%---------------------------------------%

ENDTABLE II
I ZERD I TABLE C

%---”-------------------------”----------%
I NEG I ((: B2, B4 :), (: :)) II
I ZERO ( ((: Bl, B4 :), (: B2, B3 :)) II
I POS I ((: Bl, B3 :), (: :)) I I
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %

ENDTABLE ii
I POS I TABLE C

%---------------------------------------%
I NEG I ((: B2 :), (: Bl, B4 :)) II
I ZERO I ((: Bl, B2 :), (: :)) II
I POS I ((: B1 :), (: B2, B3 :)) II
%--------------------------------------%

ENDTABLE II
ENDTABLE 1!

I ZERO I TABLE B
I NEG I TABLE C

%--------------------------------------%
I NEG I ((: B4, F1 :), (: :)) II
I ZERO I ((: B4, F2 :), (: :)) II
I POS I ((: B3, F2 :), (: :)) II

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ’ - - - - - - - - %
ENDTABLE II

I ZERO I TABLE C
%--------------------------------------%
I NEG i ((: B2, F1 :), (: :)) II
I ZERO I ((: :), (: :)) II
I POS I ((: B3, F4 :), (: :)) I I
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %

ENDTABLE II
I POS I TABLE C

7,---------------------------”----------- 310
I NEG I ((: B2, F3 :), (: :)) II
\ ZERO I ((: Bl, F3 :), (: :)) I I
I POS I ((: Bl, F4 :), (: :)) II
x-------------------------------------”-’%

ENDTABLE II
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ENDTABLE II

I POS I TABLE B

I NEG I TABLE C
%--------------------------------”------%
I NEG I ((: F1 :), (: F2, F3 :)) 1!
I ZERO I ((: Fl, F2 :), (: :)) II
I POS I ((: F2 :), (: Fl, F4 :)) II

%------------”---------------------------%
ENDTABLE II

I ZERO I TABLE C
%--------------------------------------%
I NEG I ((: Fl, F3 :), (: :))11.

I ZERO I ((: F2, F3 :), (: Fl, F4 :)) II
I POS I ((: F2, F4 :), (: :)) II

%---------------------”--------------’---%
ENDTABLE II

I POS I TABLE C

ENDTABLE

ENDTABLE

% %  S e l e c t i o n  o f  l e f t ,  r i g h t

x---------------------------------------
I NEG I ((: F3 :), (: Fl, F4 :)) II
I ZERO I ((: F3, F4 :), (: :)) II

I POS I ((: F4 :), (: F2, F3 :)) II
1 - - - - - - - - - - - - - - - - - -  - - - - - - - - ” - - - - - - - - - - - - -%

ENDTABLE II
I

up, and down thrusters resulting from

%% Y, Z, and roll

LRm_thrusters ((A,
TABLE A

I NEG I

commands .

B, C: axis_command)):  thruster_list_pair =

TABLE B
1 NEG I TABLE C

%--------------------------”-------”-----------
I NEG I ((: :), (: :)) I I
I ZERO I ((: :), (: :)) I I
I Pos I ((: :), (: :)) II

%- - - - - - - - - - - - - - - - - - - - - - - - ” - - - - - - - - - - - - - - - - - - -%
ENDTABLE II

I ZERO I TABLE C

% - - - - - - - - - - - - - - - - - - - - - - ”  - - - - - - - - - - - - - - - - - - - - -
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I NEG
I ZERO
I Pos
%------

ENDTABLE
! POS I TABLE C

%------
I NEG
I ZERO
I Pos

Ap~jendixC

((: LIR :), (: LIF, L3F :)) II
((: LIR, L3R :), (: LIF, L3F :)) II
((: L3R :), (: LIF, L3F :)) II

-——---————-——.-—————--———---———---— %
I

------——-------------——----——---——- %
(( : :), ( : :)) I I
( ( : :), (: :)) I I
( ( : :), ( : :)) I I

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ’ - - - - %
ENDTABLE 11

ENDTABLE II
I ZERO I TABLE B

I NEG I TABLE C
%------’----------------------”-------------%

I NEG I ((: U3R :), (: U3F, U4F :)) II
I ZERO I ((: U3R, U4R :), (: U3F, U4F :)) 1!
I POS I ((: U4R :), (: U3F, U4F :)) II
%-----------------------------’-------------%

ENDTABLE [1
I ZERO I TABLE C

%-----------------------------”-------------%
I NEG I ((: LIR, R4R :), (: :)) I I
I ZERO I ((: :), (: :)) I I
I Pos I ((: R2R, L3R :), (: :)) II
%-------------------------------------------%

ENDTABLE Ii
I POS I TABLE C

%-------------------------------”-----------x
I NEG I ((: D2R :), (: I)IF, D2F :)) II
I ZERO I ((: DIR, D2R :), (: DIF, D2F :)) II
I POS I ((: DIR :), (: DIF, D2F :)) II
%------------------------------------------%

ENDTABLE it
ENDTABLE 11

I POS I TABLE B
I NEG I TABLE C

%-------------------------------------------%
I NEG I ((: :), (: :)) II
I ZERO ! ((: :), (: :)) I I
I Pos I ((: :), (: :)) I I
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%-------------------------------------------%
ENDTABLE II

I ZERO I TABLE C
%-------------------------”-----------------%
I NEG I ((: R4R :), (: R2F, R4F :)) II
I ZERO I ((: R2R, R4R :), (: R2F, R4F :)) II

I Pos I ((: R2R :), (: R2F, R4F  :)) II
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ” - - - - - %

ENDTABLE II
I POS I TABLE C

%----------”-”----------------------”---------%
I NEG I ((: :), (: :)) II
I ZERO I ((: :), ( : :)) II
I F’os I ((: :), ( : :)) II
%- - - - - - - - - - - - - - - ” - - - - - - - - - - - - ’ - - - - - - - - -  - - - - - -%

ENDTABLE II
ENDTABLE II

ENDTABLE

%% An integrated six degree-of-freedom command is mapped into a vector
%% of actuator commands. Selection tables provide lists of thrusters
%% and both mandatory and optional thrusters are included as appropriate.

selected_thrusters  (cmd: six_dof_conunand)  : thruster_list =

L E T  ( B F _ m a n d a t o r y ,  BF_optional)  =

BF_thrusters(tran(cmd) (X) , rot(cmd)(pitch), rot(cmd) ( y a w ) ) ,

( L R U D _ m a n d a t o r y ,  LRUD_optional)  =

LRUD_thrusters(tran(cmd)  (Y)  ,  tran(cmd)(Z),  rot(cmd)(roll)),

BF_thr = a p p e n d ( I F  rot(cmd)(roll) =  ZERO

THEN BF_optional

E L S E  ( :  :)

ENDIF ,

BF_mandatory)  ,

LRUD_thr  = append(IF rot(cmd)(pitch) = ZERO A N D
rot(cmd)(yaw) = ZERO
THEN LRUD_optional
ELSE (: :)

ENDIF ,
LRUD_mandatory)

IN append(BF_thr, LRUD_thr)
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selected.actuators  ((HCM: six_dof_command) ,
(AAH: rot_command) ,

(state: AAH_state)):  actuator_commands =
selected_thrusters(integrated_commands(HCM,  AAH, state))

END thruster_selection
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%%

%% Several sensors are provided by the power supply to support
%% the fault monitoring functions.
%%
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power.supply: THEORY
BEGIN

IMPORTING avionics_types

power_supply_sensors: TYPE = [#
elect_batt: voltage,
valve_batt: voltage,
batt.temp: temperature
#]

END power_supply

# 40 0 4 0 eee 0 009 00040 0 e.ea 0000.0 eo ** * 00 . *o.* *49 * 90 0 0 90 e * 04 0 90 0.0 e . e e. a e o .
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%%

%% A data recorder module is provided to record SAFER performance
%% data for later analysis.
%%
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data_recorder: THEORY
BEGIN

IMPORTING avionics_types, propulsion_module,
inertial_reference_unit, power_supply,
automatic_attitude_hold
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data_ recorder_ packet: TYPE+

data_ packet ( (prop. sensors:
(IRU_sensors:
(power. sensors:
(AAH_state:
(thrusters:

END data_recorder
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propulsion_sensors) ,
inertial_ref_sensors) ,
power_supply_sensors) ,
AAH_state),
actuator_commands)):  data_recorder_packet

6*00088 90 ma eo 0 00 8 a O*O  a 4008000 0 0 00 0 00 . 0 c.* 0 * 04 0 04 0 .9* * e 00 0 04 0 000 0 e e 0 0 00 0
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% %

%% Continuous fault monitoring and consumables monitoring is

%% provided by the self-test function.
%%
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self_test:  THEORY
BEGIN

IMPORTING

self_test_

avionics..types, propulsion_module,
inertial_reference_unit,  power_supply,
automatic_attitude_hold

state: TYPE+

initial_self_test_5tate: self_test_state

%% The monitoring function is provided by the following.

SAFER_monitoring ((prop_sensors:
(IRU_sensors:
(power_sensors:
(self_test:

propulsion_sensors) ,
inertial_ref_sensors) ,
power_supply_sensors)  ,
self_test_state)):  self_test-state

END self_test

, , a , e , e . e @ @ * * e , , , , 0 * * @ e * 6 * 4 e e 0 * a * e * * 0 0 * * * * a , * * e * * * * * 0 *O * 0 # * * *9 * 0 * 4 * e a *
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%%
x% Data from the various SAFER modules is collected. for crew display
%% through the HCM character display.
%%
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HCM_display: THEORY
BEGIN

IMPORTING avionics_types,  hand.controller.module, self_test

%% The HCM display buffer is constructed and updated by the following.

display_buffer( (self_test: self_test_state) ,

(HCM_display: HCM_display_buffer)): HCM_display_buffer

initial_display_buffer: HCM_display_buffer

END HCM_display
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% %

%% The top level state machine model of  the controller is presented
%% in the following theory. A transition function describes the

%% effects of the controller’s actions during a single frame. A
%% 5 msec frame period is assumed (200 Hz sampling rate).
%%
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avionics_model:  THEORY
BEGIN

IMPORTING avionics.types, hand_controller_module,

propulsion_module, t h r u s t e r . s e l e c t i o n ,

inertial_reference_unit, automatic_attitude_hold,

data_recorder, power_supply,  s e l f _ t e s t ,  HCM_display

%% Controller inputs from SAFER modules and components.

avionics_inputs: TYPE = [#
HCM_switches: HCM_switch_positions,
grip_command: hand_grip_position,
prop_sensors : propulsion_sensors,
IRU_sensors: inertial_ref_sensors,
power_sensors:  power_supply_sensors
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#]

%% Controller outputs to SAFER modules and components.

avionics_outputs: TYPE = [#
HCM_displays: HCM_display_set,
prop_actuators: actuator.comrnands,
data_recorder: data_recorder_packet
#]

%% Internal state variables maintained by the controller.

avionics_state: TYPE = [#
msg_display: HCM_display_state,
AAH_state: AAH_state,
clock: nat,
self_test: self_test_state
#]

avionics_result:  T Y P E  = [ #  o u t p u t :  avionics_outputs,

s t a t e : a v i o n i c s _ s t a t e  # I

%% The top level state machine transition function represents one
%% frame of controller operation (once around the main control. loop).

SAFER_control  ((avionics_inputs:  avionics_inputs),
(avionics_state: avionics_state)) : avionics-result =

L E T  s w i t c h e s =  HCM_switches(avionics_inputs)  ,

raw_grip =  grip_command(avionics_inputs)  ,

prop-sensors = prop_sensors(avionics_inputs) ,
lRU_sensors = IRU_sensors(avionics_inputs)  ,
power_sensors = power_sensors(avionics_inputs) ,

AAH_state = AAH_state(avionics_state) ,
AAH_active = NOT all_axes_off(active_axes(AAH_state)  ),
display = msg_display(avionics_state)  ,
clock = clock(avionics_state)  ,
self_test = self-test(avionics_state) ,

—
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grip.cmd =  grip.command(raw.grip, MODE(switches)),

AAH_cmd =  AAH_control_out(IRU_sensors,  prop.-sensors,

AAH-state),

thrusters = selected_actuators(grip-cmd,  AAH_cmd, AAH_state),

monitoring = SAFER_monitoring(prop_SenSOrS,  IRU_sensors,

power_sensors, self_test),

disp_windov = buffer(display) (current(display) ),
disp_buffer = display_buffer(monitoring, buffex(display)),
disp_pointer = next_disp_pointer(DISP(switches)  , display)

IN
(# output := (# HCM_displays  :=

(# LCD := disp_window,
THR := thruster_on(prop_sensors) ,
AAH := AAH_active #),

prop_actuators  := thrusters,
data_recorder :=

data_packet(prop-sensors, IRU-sensors,
power_sensors, AAH_state,
thrusters)

#) ,
state := (# msg_display :=

(# switch := DISP(switches),
buffer := disp_buffer,
current := disp_pointer #),

AAH_state :=
AAH_transition(IRU_sensors,  prop_sensors,

AAH(switches), grip_cmd,
AAH_state, clock),

clock := I + clock,

self_test := monitoring
#)

#)

%% The controller is assumed to be powered up into the following
%% initial state.

initial_avionics_state: avionics_state =

(# msg-displ.ay := (# switch := CmR,
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buffer := initial .display-buffer,
current := 1

#) ,
AAH_state := (# active_axes := (LAMBDA (a: rclt_axis):  false),

ignore_HCM := (LAMBDA (a: rot_axis): false),
toggle := AAH_off,
timeout := O,
control_vars := initial_control_law_state

#) ,
clock := O,
self_test := initial_self_test_state

#)

END avionics.model

C.4 Analysis c)f SAF13R

Having produced a formalized version
rigorous analysis are possible. Precisely
that can themselves bepreciscly  stated.

of the SAFER requirements, several types of
stated requirements models have consequences
IIJF expressing various properties of the system

or selected subsysteu]  behavior, it is possible to analyze requirements, in a limited w’ay,
for well-formccllless  and com~)lianm with desired characteristics. Once expressed inthis
Inanner, it is further possit)le to forn~ally prove  that the ~)ropertics  fol low frolll the
dcfinit  ions given in the requirements model.

C .4 .1  Formulat ing  System Propert ies

lkolllat)asicxllc~dcl  c)fthe SAFER  controller, there are many possible aspects ofsystem
be]lavior ollellligllt  wish toiuvestigate  or verify. Someaspectsm ightresultf  romhigher-
level requiremcutso rdesired  systemc haracteristics.  Examples of such properties areas
follows:

VVhen AAH is inactiveaud no hand grip commands areprescnt there shouldbe
no thruster firin~,s.

SAFEFl should never fire moret hanfour thrusters simultaneously.

INo two selected thrusters should oppose each other, that is, have cancelling thrust
with respect tc) the center of mass.

Once AA]-]  is turned off for a rotational axis it remains off until a new AAH cycle
is initiated.
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Properties such as these identify behavior that designers expect or recluirc t be system
to have if it is to satisfy their expectations. These  properties must logically follow
as consequences of the definitions contained in the system model. Thus, if a mistake
was made in deriving the requirements or fornlalizing  thcm, attempts tc) express aucl
prove these properties will help detect the error. This apj~roacb  then constitutes a
rigorous method of analyzing requirenlents.  It becomes possible to definitively answer
questions about system behavior, reducing the chances of error from n~iscalculation,
interpretation, or engineering judgment.

C.4.1.1 Formalization of the Maximum Thruster Property

To illustrate the process of formalizing system properties, it is instructive to take one
of the suggested properties mentioned above and capture it formally using I’VS. Let
the hlaximum Thruster Property be the requirement that SAFER should never fire
more than four thrusters simultaneously. l’his condition was expressed as an explicit
recluirement  in Section C.2. It can be shown that it follows as a direct consequence of
the more detailed functional requirements.

Thruster selection is a fuuction of the hand grip command and any AAH-.generated
commands. Tables C.2 and C.3 are used to choose appropriate thrusters based on which
commands appear. Examining the tables, it can be seen that as many as four thrusters
can be selected from each, resulting, at first glance, in as many as eight thrusters chosen
from both. Clearly, some other conditions are needed to reduce the possibilities. Several
restrictive conditions make some command combinations invalid. In addition, the table
entries themselves are interrelated in ways that limit the thruster count for multiple
commands. Taking these rest rict ions and t }le table structure into account, the four-

thrustcr maximum can  be  der ived .

Express ing  the  Maximum Tlmuster Property in PVS is s t r a i g h t f o r w a r d :

FORALL (a.in: avionics_ inputs) , (a_st: avionics. state) :
length (prop_ actuators (output (SAFER_ control (a_in, a_st ) ) ) ) <= 4

This formula asserts that for any input and state values, the outputs produced by the
SAFER controller, which include the list of thrusters to fire in the current frame, obey
the maximum thruster requirement. This is a strong statement because it applies to
any output that can be generated by the mc)del.

Section C.4. 1.2 presents a PVS theory containing the desired property and support-
ing lemmas needed to prove it. The property appears at the end oft he theory, expressed
as the PVS t hcorem called max_thrust  ers. All the preceding lemmas in this theory arc
used to construct the proof of max.thrusters. Some lemmas were drafted specifically
to decompose the overall proof into manageable pieces, thus representing intermediate
steps. Other lemmas, however, express various facts about the problem domaiu that
are useful in their own right and might find applicatioxl  in other proof efforts.
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C.4.1.2 PVS Theory for Maximum Thruster Property

oo. e.eooe. aeo .  . . 4 . 0 0 0 0 0 0 0 0  Ooeeooaeeeboe ooenoeeeoaeoe .oee O** Oao*ab eoeeo
LLLLLLALLALAdLAkLLhLLLALkALLLkLLLLALALLALLLkhLAhLLLLALALLAALLLLLLLLLAL

% %

%% Some properties of the SAFER controller are formalized in the
%% following F’vs theory. The top level theorem, max_thrusters,
%% asserts that for any input and current state values, the SAFER
%% controller  will issue  no more four thruster firing commands.
%% The theorems and lemmas stated below have all been proved using
%% the PVS interactive proof checker.
%%
0 0 * e e 0 000 @ 0 040000 0 0 0 * 00 O* * e @* 0 9*89 en Q 400** *9 0 00 ,0 0 0 9* 90 * 0 e * @ 00 0 0 4 * 0 0 0 a
1111111111/1111 111111111111111 llllllllillllll lllllflllllllll llllllllllo 0 @ o 0 0 0 4 a 0 00 Ooa 4 a 0 0 0 e 0 @be @ 0 00 04 9* * # *a a 060 coon 0 00 a 0 0 0 0 0 0 4 8 0 0 0 0 0 a @ a o 0 0 6 a

SAFER_properties: THEORY
BEGIN

IMPORTING avionics_model

A,B,C: VAR axis_command

t r : VAR tran.command

HCM,cmd: VAR s ix_dof_command

AAH : VAR rot_command

s t a t e : VAR AAH_state

tkm,U,V: VAR thruster_list

a c t : VAR actuator_commands

BF , LRUD : VAR thruster_list_pair

%% A simple list property is needed to support thruster selection proofs.

length_append:  LEMMA
length(append(U, V)) = length(U) + length(V)

%% Only one translation  command can be accepted for thruster selection.

only_one_tran(tr):  bool =
(tr(X) /= ZERO IMPLIES tr(Y) = ZERO AND tr(Z) = ZERO)

AND (tr(Y) /= ZERO IMPLIES tr(Z) = ZERO)

only_one_tran_pri:  LEMMA
onl.y_one_tran  (prioritized_tran_cmd(tr)  )
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only _one_tran_int: LEMMA
only -one_ tran(tran(integrated_  commands (HCM, AAH, state)))

%% All categories of selected thrusters (BF vs. LRUD and mandatory
%% VS. optional) are bounded in size by two, which follows directly
%% from inspection of the tables.

max_thrusters_BF: LEMMA
length(proj_l (BF_thrusters(A, B, C))) <= 2 AND
1ength(proj_2(BF_thrusters (A, B, C))) <= 2

max_thrusters_LRUD: LEMMA
length(proj_l (LRUD_thrusters(A,  B, C))) <= 2 AND
length(proj_2(LRUD_thrusters (A, B, C))) <= 2

%% Absence of translation commands implies no optional thrusters
%% will be selected.

no_opt_thr_BF:  LEMMA
tr(X) = ZERO IMPLIES length(proj_2(BF_thrusters(tr(X) , B, C))) = O

no_opt_thr_LRUD: LEMMA
tr(Y) = ZERO AND tr(Z) = ZERO IMPLIES

length(proj_2(LRUD_thrusters(tr(Y)  , tr(Z), C))) = O

%% TOP level theorems establishing bounds on number of selected thrusters:

max_thrusters_sel:  LEMMA
only_one_tran(tran(cmd) ) IMPLIES

length(selected_thrusters(cmd)  ) <= 4

max..thrusters: THEOREM
FORALL (a_in: avionics_inputs), (a_st: avionics_state):

length(prop.actuators(output  (SAFER_control(a_in,  a_st)))) <= 4

END SAFER_properties
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C.4.2 Proving System Properties
t

Merely expressing anticipated facts about a system model nlay be sufficient to flush out
.

errors or lead to the discovery of other nc)teworthy issues. To obtain fu~ther benefit
fronl the fornlalizat ion, a proof nlay be ])erfornled to n~ake a highly convincing case s
for the absence of undesirable systenl behavior. ILrhile informlal proofs could suffice
in nlany cases, fully fornlal  proofs with nmchanical  assistance offer the highest degree
of assurance. Carrying out proofs within a systenl such as PVS call yield very high 9
confidence in any results established, subject to the assumptions made about the system
elw’ironment  during the modeling effort.

I

C.4.2.1  Proof Sketch of the Maximum Thruster Property

The argunlent  for why four thrusters is tile maxinmnl  is as follows. in both of the s

thruster selection tables, there can be at most two nlandatory thrusters and at most two
optional thrusters selected. Consider whether there is a translation conunand present
for tile X axis. Q

●  C a s e  1 :  N o  X  c o m m a n d  p r e s e n t . inspection of Table C.2 shows that there
will be Iio optiol~al  thrusters selected in this case. AText  consider whether there is 1

a pitch or yaw conltnand present.

o Case 1,1: No pitch or yaw commands. Inspection of Table C3.2 shows B

that no thrustcv-s at all are selected in this case. At n~ost four can con~e from
the other table.  IIence, the bound holds.

s
o Case 1.2: Pitch or yaw command present. Table C.3 shows tl~at no op

tional thrusters are chosen fron~ this table. Hence only n~andatory  thrusters
fronl each table are chosen, which number at most four.

s

● Case 2: X command present. Because only one translation command is
allowed, it follows that no Y or Z comtnand can appear. This, in turn, implies
that no optional thrusters are chosen from Table  C.3. NTOW consider whether there o

is a roll command.

o Case 2.1: No roll command. Without a roll command, no thrusters at t
all result from Table C.3. Thus the bound holds.

o Case 2.2: Roll command present. A roll command implies that Ta-
ble C.2 yields no optional thrusters. This leaves only mandatory thrusters R

froln each table, and the bound of four thrusters is upheld.

s
The foregoing proof sketch is the case analysis used to tackle the formal proof carried
out using PVS.



In the theory SAFER.properties fronl Section (1.4.1.2, max.thrusters is the
top level t hcomn whose proof is based on the lenln~as  max.thrust ers _sel and
only _one_tran_int.  Each of these lenlulas is, in t,urn, ~}roved in tern]s of other len~nlas
fronl this them-y. max-thrusters.sel  had the nlost conl~)lcx proof of the group; its
~noof involved the case analysis out linecl above.

Section C.4.2.2 shows a transcript fron~ the proof of theorenl max.thrusters. This
proof contained only five steps, each of which recpires the user to supply a prover
conlmand. The notation of PVS proofs is based on a sequent representation. A sequent
is a stylized way of normalizing a logical formula that has a convenient structure wit]l
useful symmetries. In a sequent, a (numbered) list of antecedent formulas is meant,  to
i~up)y  a (nunlbered)  list of cc)nsequent  formulas:

[-2] <antecedent 2>
[-11 <antecedent 1>

I  -- - - - - -

[11 <consequent 1>
[21 <consequent 2>

Tile antecedents are considered to form a conjunct iol~  and the consequents form a dis-
junction. Every  user-supplied prover command or inference rule causes one or more nc~v
sequents  to be generated that,  moves the proof closer to com~)letion.

In the proof of max-thrusters, the five steps are as follows:

1.

2.

3.

4.

5.

Rule: (skosimp*). This rule nlerely elimillatcs  the outer universal quantifiers
(fronl the FORALL cx~n-ession)  and sin~plifies  the result. This is a conlmonly useci
command at the start of nlany proofs.

Rule: ( e x p a n d “  SAFER.cont ro l”  ) .  The  c i ted  funct ion  is expanded in place @

this rule, with all actual arguments propagated to their proper place.

Rule: (expand “ selected-actuators”). Another case of function expansion is
used  here.

Rule: (use “only -one-tran-int” ). One of the lemmas from the containing the-
ory is importecl  for later use. The lemma’s variables are automatically instantiated
with terms that appear to be useful, which is easy to do in this case.

Rule: (forward-chain “max. thrusters-sel” ). Forward chaining is the appli-
cation of a lemma of the form P => Q when formula P appears in the antecedent
list. In this case, the whole sequent is actually an instance of the cited lemma, so
in~~oking  the forward chaitl rule finishes off the ~)roof  immediately.

Proofs of the remaining lemmas were all carried out within PVS in a similar fashion.
h40st  required only a few steps. The exception was max_thrust  ers-sel, which required
a more elaborate proof because of the case analysis mentioned above. This proof con-
tained around 4[1 steps, resulting from several case splits and the subsequent equality
sut)stitutions  to use the facts generated by the case splitting.
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c 422 p\~S proof of Maximuln  Thruster Property. . .

max.thrusters :

I - - - - - - - -
-inputs) , (a_St : av ionics_state) :{1} FORALL (a_in:  avionics

leng~h~prop_actuators(output  (SAFER_control(a-in,  a_ S t ) ) ) )  ~= 4

Rule? (skosimp*)
Repeatedly Skolemizing  and flattening,
this simplifies to:
max_thrusters :

1 - - -
'--~ength(prop-actuators(output(SAFER_c0ntrol(a-in!  lj a-st !1)))) <= 4{13

Rule? (expmd “sAFER_control” )

Expanding the definition of SAFER_control,

this simplifies to;
max_thrusters :

I --------
{1> length(selected_actuators(grlp _commmd(grip_commd(a_in!  1) ,

NODE
(HCM_switches(a_in!  l ) ) ) ,

AAH_control_ out(IRU_sensors(a_in!  1) ,
prop_sensors (a_in!l) ,
AAH_s~ate(a_st  !1)),

AAH-state(a-st  !1)))
<= 4

R u l e ?  ( e x p a n d “selected_actuators”  )

d e f i n i t i o n  o f  selected_actuators,E x p a n d i n g  the

this simplifies to:

m a x _ t h r u s t e r s  :

1-”------
-(13 length

(selected_thrusters
(integrated-co~mds  (grip_comand(grip_commd(a_~n  !1),

MODE
(HCM-switches(a-in!  1))),
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In the theory SAFER.properties fronl Section C.4.1 .2, max-thrusters is tile
top level t heorenl whose proof is based on the len~nlas max.thrust  ers _sel and
onl y_one.t ran_int. 13ach of these lcmnas is, in turn, proved in terms of other lenlnlas
fronl this theory. max.thrusters-sel  had tile nlost conlplex proof of the group; its
proof involved the case analysis out lit~ed above.

Section C.4.2.2 shows a transcri~)t  fronl the ])roof of theorenl  max.thrusters. This
proof contained only five steps, each of which requires the user to supply a prover
conluland. The notation of PVS proofs is based on a sequent representation. A sequent
is a stylized way of normalizing a logical formula that has a convenient structure with
useful symmetries. lU a sequent, a (numbered) list of antecedent formulas is meant to
i[np]y  a (numbered) list of consequcut  formulas:

[-2] <antecedent 2>
[-11 <antecedent 1>

1 - - - - - - -
[11 <consequent 1>
[21 <consequent 2>

Tile antecedents are considered to fornl a couj unctiol)  and the consequents form a dis-
junction. Every  user-supplied prover command or inference rule causes one or more ncnv
sequents  to be generated that,  moves the proof closer to completion.

Ill the proof of max_thrusters,  the five steps are as follows:

1.

2.

3.

4.

5.

R u l e :  (skosimp*). This rule merely eliminates the outer universal quantifiers
(from the FORALL expression) and simplifies the result. This is a commonly used
comnland at the start of many proofs.

Rule: (expand “ SAFER.control”  ). ~’hc cited function is expanded in place by
this rule, with all actual argunlents  propagated to their proper place.

Rule: (expand “ selected.actuators”  ). Another case of function expansion is
used here.

Rule: (use “ onl y-one-t ramint”  ). one of the lcmrnas from the containing the-
ory is imported for later use. The Ienmla’s variables are automatically instantiated
with terms that appear to be useful, which is easy to do in this case.

Rule: (forward-chain “max-thrusters-  sel” ). Forward chaining is the appli-
cation of a lemma of the form P => Q when formula P appears in the antecedent
list. In this case, the whole sequent, is actually an instance of the cited lemma, so
invoking the forward chaitl rule finishes off the proof inln~ediately.

Proofs of the ren~aining lenmas were all carried out within PVS  in a sinlilar fashion.
Most required only a fcw steps. The exception was max.thrust ers-sel, which required
a nlore elaborate proof because of the case analysis n~entioned  above. This proof con-
tained around 40 steps, resulting from several case splits and the subsequent equality
sut)st itutions  to use the facts generated by the case splitting.
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C.4.2.2 PVS Proof of  Maximum Thruster Property

max.thrusters :

I ‘-----”-

{13 FORALL (a_in: avionics_inputs), (a_st: avionics_state):
length(prop.actuators(output  (SAFER_control(a_in, a-st)))) <= 4

Rule? (skosimp*)
Repeatedly Skolemizing and flattening,
this simplifies to:
max_thrusters :

1-------
{13 length(prop_actuators(output (SAFER_control  (a_in!l, a_st!l)))) <= 4

R u l e ?  ( e x p a n d “SAFER_control”  )

E x p a n d i n g  t h e  d e f i n i t i o n  o f  SAFER_control,

this simplifies t o :

m a x _ t h r u s t e r s  :

1-------
{1} length(selected_actuators(grip_cowmd(grip_commd(a-in  !1),

MODE

(HCM_switches(a-in!  1))),

AAH_control_out  (IRU_sensors (a-.in!l),

p r o p _ s e n s o r s ( a _ i n !  1 ) ,

AAH_state(a_st !1)),

A A H _ s t a t e ( a _ s t  !1)))
< .  4

Rule? (expand “selected_actuators”  )
Expanding the definition of selected_actuators,
this simplifies to:
max_thrusters :

1--” -----
{1} length

(selected_thrusters
(integrated.commands  (grip_command(grip_command(a_in  !1),

MODE
(HCM_switches(a_in!  1))),
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AAH_control_out  (IRU_sensors(a_in !1),
prop_sensors(a_in! 1),
AAH_state(a_st !1)),

AAH_state(a_st! l))))
<= 4

R u l e ?  ( u s e  “only_one_tran_int”)
Using lemma only_one_tran_int,
t h i s  simplifies  to :
max_thrusters :

{-11 only_one_tran  (tran(integrated_commands  (grip_command (grip_comand  (a-in!l),
MODE
(HCM_switches(a_in!  l))),

AAH_control_out
(IRU_sensors(a_in! 1),
prop_sensors(a_in !1),
AAH_state(a_st !1)),
AAH_state(a_st !l))))

1-------
[11 length

(selected_thrusters
(integrated_commands  (grip_command(grip_commmd  (a_in!l),

MODE
(HCM_switches(a_in!  1))),

AAH_control_out  (IRU_sensors(a_in! 1),
prop_sensors(a_in !1),
AAH_state(a_st! l)),

AAH_state(a_st  !1))))
<= 4

Rule? (forward-chain “max_thrusters_sel”)
Forward chaining on max_thrusters_sel,
Q.E.D.

Run time = 4.03 sees.
Real time = 73.92 sees.
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Figure C.2: Propulsion module structure and mechanisms.
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